RITZ VARIATION METHOD

Series of trial ψ 's ψ_1, ψ_2 corresponding energies E_1, E_2, \dots calculated.

Minimum E corresponds to the best ψ

Actual $E < E_{min}$ found

Special case of the above - LINEAR COMBINATIONS METHOD

Put $\psi = c_1 \psi_1 + c_2 \psi_2 + c_3 \psi_3 + \dots + c_n \psi_n$

Variation method applied to obtain values of c which give *minimum energy* for ψ

- 1. With n terms in the expression for ψ , the equation for E is of the **n**th order giving **n** values: ground state and excited states.
- 2. The importance of the contribution of ψ_1 , ψ_2 , ψ_3 etc. to the actual wavefunction is $c_1: c_2: c_3:$ etc.
- 3. The greater the overlap between ψ_1, ψ_2 etc. the lower the energy of the corresponding ψ . Thus high overlap leads to a strong bond.

Molecular orbitals: LINEAR COMBINATION OF ATOMIC ORBITALS (L.C.A.O.)

 $\psi = c_A \psi_A + c_B \psi_B$

 ψ_A and ψ_B are for **atomic orbitals**

APPLICATION OF THE VARIATION METHOD TO ONE-DIMENSIONAL WELL

An exact solution is straight forward:

 $\psi = (2/L)^{\frac{1}{2}} \sin n\pi x/L$ but, for sake of illustration, consider trial solutions.

A cubic (over part of its range) might be suitable. One which fits the boundary conditions is $\psi_1 = ax^3 - aLx^2$

Applying the normalisation condition gives $a^2 = 105/L^7$

Using the energy function to evaluate the energy gives $E=7\mathbf{h}^2/mL^2$

A *better solution* might be found using the method of linear combinations. If ψ_1 is a possible solution, the complementary cubic could also be

 $\psi_2 = -ax^3 + 2aLx^2 - aL^2x$

By symmetry

normalisation condition
$$a^2 = 105/L^7$$

energy
$$E = 7h^2/mL^2$$

Linear combination

A linear combination should give a better wavefunction:

$$\psi_3 = c_1 \psi_1 + c_2 \psi_2$$

Applying the variation method gives

$$c_1/c_2 = \pm 1$$

(ground state and excited state)

The new wavefunction is much better, i.e. the energy predicted is much closer to that of the exact solution.

	Relative energy
	E ×mL²/h²
1st excited state	
Linear combination of cubics	21
Exact	19.6
Ground state	
Single cubic	7
Linear combination of cubics	5
Exact	4.9