RITZ VARIATION METHOD

Series of trial $\psi^{\prime} \mathrm{s} \quad \psi_{1}, \psi_{2} \ldots \ldots$. corresponding energies $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$. calculated. Minimum E corresponds to the best ψ Actual $\mathrm{E}<\mathrm{E}_{\text {min }}$ found

Special case of the above - Linear Combinations method

$$
\text { Put } \psi=c_{1} \psi_{1}+c_{2} \psi_{2}+c_{3} \psi_{3}+\ldots \ldots . . c_{n} \psi_{n}
$$

Variation method applied to obtain values of c which give minimum energy for ψ

1. With n terms in the expression for ψ, the equation for E is of the $\mathbf{n}^{\text {th }}$ order giving \mathbf{n} values: ground state and excited states.
2. The importance of the contribution of $\psi_{1}, \psi_{2}, \psi_{3}$ etc. to the actual wavefunction is $c_{1}: c_{2}: c_{3}$: etc.
3. The greater the overlap between ψ_{1}, ψ_{2} etc. the lower the energy of the corresponding ψ. Thus high overlap leads to a strong bond.

Molecular orbitals: Linear Combination of Atomic Orbitals (L.C.A.O.)

$$
\psi=c_{A} \psi_{\mathrm{A}}+\mathrm{c}_{\mathrm{B}} \psi_{\mathrm{B}}
$$

ψ_{A} and ψ_{B} are for atomic orbitals

APPLICATION OF THE VARIATION METHOD TO ONE-DIMENSIONAL WELL

An exact solution is straight forward:

$$
\psi=(2 / \mathrm{L})^{1 / 2} \sin n \pi x / \mathrm{L}
$$

but, for sake of illustration, consider trial solutions.
A cubic (over part of its range) might be suitable. One which fits the boundary conditions is

$$
\psi_{1}=a x^{3}-a L x^{2}
$$

Applying the normalisation condition gives

$$
\mathrm{a}^{2}=105 / \mathrm{L}^{7}
$$

Using the energy function to evaluate the energy gives

$$
\mathrm{E}=7 \mathrm{~h}^{2} / \mathrm{mL}^{2}
$$

A better solution might be found using the method of linear combinations. If ψ_{1} is a possible solution, the complementary cubic could also be

$$
\psi_{2}=-a x^{3}+2 a L x^{2}-a^{2} x
$$

By symmetry

$$
\begin{aligned}
& \text { normalisation condition } \\
& \qquad \begin{array}{c}
\mathrm{a}^{2}=105 / \mathrm{L}^{7} \\
\text { energy } \\
\mathrm{E}=7 \mathrm{~h}^{2} / \mathrm{mL}^{2}
\end{array}
\end{aligned}
$$

Linear combination

A linear combination should give a better wavefunction:

$$
\psi_{3}=c_{1} \psi_{1}+c_{2} \psi_{2}
$$

Applying the variation method gives

$$
\mathrm{c}_{1} / \mathrm{c}_{2}= \pm 1
$$

(ground state and excited state)
The new wavefunction is much better, i.e. the energy predicted is much closer to that of the exact solution.

	Relative energy $\mathrm{E} \times \mathrm{mL}^{2} / \mathrm{h}^{2}$
1st excited state	
Linear combination of cubics	21
Exact	19.6
Ground state	
Single cubic	7
Linear combination of cubics	5
Exact	4.9

