Unit Catalogue

BIOL0001: Skills & techniques 1 (basic laboratory & communication skills)

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites: Co BIOL0003

Aims & learning objectives:
Aims: To provide students with an opportunity to acquire basic laboratory skills ((general microbiological practice and biochemistry techniques) and communication skills delivered by directe d tutorial assignments and computer practical sessions). Tutorial sessions will develop group discussion and presentation skills. Computer sessions will introduce students to Windows, MS Work and BIDS. After taking this course the student should be able to:
* present reasoned arguments and analyses in the form of a word-processed document
* to cite references (in recognised format) which they have obtained form an on-line bibliographical database
* possess skills of accurate autopipetting and spectrophotometric determinations.
Content:
Practical skills: Basic quantitative laboratory skills; micro-organism handling; radioisotope techniques. IT skills: Introduction to IT and campus IT facilities; word-processing, BIDS. Presentation skills: Essay writing. Small g roup discussion work. These skills will be developed during tutorial sessions which have the additional aim of identifying and rectifying weaknesses in subject background.


BIOL0002: Skills & techniques 2 (quantitative skills)

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: CW100

Requisites:

Aims & learning objectives:
Aims: To provide students with an opportunity to develop data analysis and mathematical skills through statistics workshops, directed tutorial assignments and computer session with Minitab. After taking this course the student should be able to:
* decide on an appropriate statistical test for the analysis of scientific data
* execute basic statistical tests using Minitab and interpret the outcome of such tests
* manipulate and transfer data from one software application to another.
Content:
Introduction to quantitative biology, including elementary statistics. Use of Minitab. Numerical calculation workshops. Small group discussion work. Verbal and written presentation.


BIOL0003: Biochemistry 1

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX80 PR20

Requisites: Co BIOL0001

Pre A-Level Chemistry Aims & learning objectives:
Aims: To teach the students the pathways of central metabolism and to relate the regulation of these pathways to the homeostasis of the whole organism. In order to appreciate and understand metabolism, the students are taught the fundamental aspects of enzymes and their regulation, and this in turn is necessarily preceded by lectures on protein structure. After taking this course the student should be able to:
* know the pathways of central metabolism
* understand the way in which the cell degrades nutrients in small steps to allow the energy to be trapped and converted to a useful form
* appreciate the way in which central metabolism connects catabolism and anabolism
* understand the regulation of central metabolism with respect to the needs of the organism in relation to its environment
Content:
Proteins: amino acids - structures, ionisation and physical properties; primary structure and an overview of protein folding and conformation. Enzymes: catalysis, kinetics, regulation. Metabolism: chemistry of monosaccharides, gly colysis, gluconeogenesis, citric acid cycle, glyoxylate cycle, regulation of central metabolism.


BIOL0004: Biochemistry 2

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX80 CW20

Requisites: Pre BIOL0003

Aims & learning objectives:
Aims: To introduce the central pathways of fatty acid metabolism and mitochondrial oxidation and integrate these into overall cell function. To inculcate appreciation of the metabolic pathway s into function at the organ and tissue level. To teach the implications of stereochemistry into the biochemistry of key metabolic intermediates. After taking this course the student should be able to:
* appreciate the principles of mitochondrial oxidative function
* understand lipid structure and the pathways of fatty acid oxidation and synthesis
* understand the mechanisms of neurotransmission and muscle contraction
* comprehend the stereochemistry of small organic molecules of biological importance
Content:
The course is a direct follow on from BIOL0003. Topics studied are 1) mitochondrial bioenergetics, respiration, oxidative phosphorylation and the chemiosmotic theory; 2) lipid metabolism structure of lipids, catabolism and anabol ism of fatty acids, ketogenesis and coordination with other metabolic pathways; 3) biochemistry of animal tissues and organs, such as mechanisms of neurotransmission and muscle contraction; 4) stereochemistry of simple carbohydrates and citric acid cycl e intermediates with applications of biochemical mechanisms.


BIOL0005: Cell biology 1

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To introduce the techniques available for determining the structure and function of cellular components and processes, to describe the structure and function of cells and cell organelle s and to show the diversity of cells. After taking this course the student should be able to:
* describe the structure of prokaryotic and eukaryotic cells
* describe the structure and explain the function of cell organelles
* make comparisons between related structures and functions
* critically appraise methods available to determine the nature and function of cellular processes
* understand the dynamic nature of cell behaviour.
Content:
Introduction: eucarya, eubacteria and archaea; microscopical techniques; cytochemistry; cell fractionation and autoradiography. The structure and function of cell membranes, plant walls, intercellular channels. Cellular processe s such as cell signalling, cytoskeleton and cell movement, secretion and absorption. Organelles involved in energy metabolism: chloroplasts and mitochondria, plant microbodies. Nucleus, chromosomes, cell growth and proliferation, mitosis and meiosis.


BIOL0006: Cell & molecular biology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites: Pre BIOL0005

Aims & learning objectives:
Aims: To introduce the structure and function of nucleic acids; To introduce the concepts and methodology of genetic modification. To introduce the processes of animal and plant development . After taking this course the student should be able to:
* understand how the structure of nucleic acid determines their biological function
* understand the power of the techniques of genetic modification for studying and manipulating organisms, especially micro-organisms, for fundamental and applied science
* appreciate the role changing patterns of gene expression play in modulating development during animal embryogeny
Content:
The structure and function of nucleic acids (DNA and RNA) in relation to organisms, genes, gene expression and protein synthesis. How organisms, genes and gene expression can be altered and studied via the technology of genetic mo dification. How the changing patterns of gene expression in cells and tissues can lead to the development of an egg into an animal, using examples from Xenopus, Drosophila and mouse.


BIOL0007: Genetics

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX60 PR30 OT10

Requisites:

Aims & learning objectives:
Aims: To introduce the principles of inheritance, to describe the chemical nature of inheritable material and the molecular basis of mutagenesis, to describe the structure and expression of genes and genomes in cells, to enable the student to appreciate how genetic data are generated and interpreted, to show basic genetic techniques in a wide range of organisms. After taking the course the student should be able to:
* explain Mendelian principles and their underlying concepts
* explain and create a genetic map
* describe how the chemical structure of DNA accounts for information encoding and its change
* appreciate the structure and dynamic nature of the genome
* understand the basis of the gene transfer in prokaryotes.
Content:
Topics: Principles of inheritance in eukaryotes; chemical nature of the gene; structure of genomes; gene expression; mutagenesis; non-Mendelian genetic systems. Practical sessions cover: Random assortment of two genetic markers in the fruit fly (Drosophila); sex linkage in Drosophila; tetrad analysis in a fungus (Sordaria); complementation testing in the yeast Saccharomyces; genetic mapping in the fungus Aspergillus; mutagenesis in the bacterium < I>Salmonella; genetic polymorphism in Homo sapiens.


BIOL0008: The diversity of bacteria & fungi

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To introduce students to the characteristic features and biological properties of bacteria (prokaryotes) and fungi (eukaryotes). The two strands of the unit are taught separately to p rovide a thorough grounding in the cellular, morphological and general physiological properties of the two groups of organisms through lectures and complementary practical sessions. These are related to the diversity of habitats, modes of life and practi cal and environmental importance of the two groups. After taking this course the student should be able to: (in bacteria)
* describe in detail the size and anatomical features of typical bacterial cells
* show a clear understanding of the structure and function of important cellular components
* discuss bacterial growth in terms of nutritional requirement and the influence of physicochemical factors on growth and survival
* demonstrate the acquisition of aseptic manipulative skills and accuracy, staining techniques, microscopic examination methods and observational and interpretative faculties (in fungi)
* have an outline knowledge of fungal classification and how this is related to diversity in form and function
* appreciate the scientific, environmental and practical importance of fungi
* know where and how fungi grow and reproduce
* know how to study fungi macroscopically, microscopically and in culture.
Content:
Bacteria: relative to the other domains of cell-based life; bacterial cell shapes and size, ubiquity and adaptability; methods for their visualisation; anatomy, from chromosome to capsule, via ribosomes, cytoplasmic inclusions, cel l membrane, cell wall, pili, flagella and endospores; growth/cultivation; nutritional requirements, modes of energy-yielding metabolism, influence of physical factors (temperature, pH, redox potential, water activity). The essentials of practical bacteri ology, embodying good laboratory practice. Fungi: Diversity and significance of the fungal Kingdom; hyphal structure and growth and the nature of mycelium; sexual reproductive cycles; asexual reproduction; nutritional ecology fungi as saprotrophs, biotro phs and necrotrophs, decomposers, parasites and symbiotic partners.


BIOL0009: The diversity of animals & plants

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites: Pre BIOL0008

Aims & learning objectives:
Aims: To demonstrate the diversity of invertebrate animals, to use comparative anatomy and embryology to reveal clues about invertebrate evolution. To demonstrate the diversity of plants, emphasising the adaptive significance of the organisational innovations which have evolved within the constraints imposed. After taking this course the student should be able to:
*define the terms deuterostome, protostome, coelom, diploblastic, triploblastic, radial and bilateral symmetry
*describe aspects of structure and function which contribute to the success of animals at different levels of complexity
*give an account of the defining feature of the major groups of invertebrate animals.
*give an account of the defining features of the major groups of plants
*understand how the different groups of plants use light energy for the biosynthesis of biomolecules
Content:
What is an invertebrate - defining terms, simple metazoans (sponges and coelenterates), 3 types of work-like animal (Nematodes, flatworms and Annelids), shell bearing animals (molluscs), focus on squid, cuttlefish and octopus (cep halopods), invertebrates with an external skeleton - why are insects so successful (arthropods)? A consideration of the functioning of plants as non-mobile, photo-autotrophic life forms with federal organisation.


BIOL0011: The biosphere

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To provide a global perspective of the communities and ecosystems of the world and the role of these systems in the flow of energy and matter. After taking this course the student should be able to:
* identify the main flows of energy through the biosphere
* understand how minerals cycle in the environment and how soils form
* appreciate the main features of aquatic environments and terrestrial biomes
* have an awareness of the effects that humans have on the environment
Content:
The flow of energy through the biosphere; the global biogeochemical cycles; soils and aquatic environments; the major terrestrial biomes(tundra, northern coniferous forests, temperate deciduous forests, temperate grasslands, and tr opical forests). The impact of humankind on the environment, with particular emphasis on pollution.


BIOL0012: Ecology & evolution

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To provide a broad introduction to key concepts in ecology and evolution. To approach issues in ecology and evolution in a rigorous, cohesive way that will provide the students with a c onceptual framework that will help them to examine other areas of biology in a fuller context of evolution and ecology. To provide a firm foundation for more detailed study within the specific fields of evolution and ecology later in their course. It aims to introduce students to the unique position of ecology and evolution in the biological sciences; why these disciplines pose unusual challenges such as huge time scales and an attendant paucity of experimental information; why ecology and evolutio n tend to be analytical rather than experimental sciences; reasons why these are theory driven sciences and the special role of mathematical models in these disciplines. After taking this course the student should be able to:
*outline certain key principles in evolution and ecology
*demonstrate an understanding of the unique position of evolution and ecology in the biological sciences
*demonstrate an understanding of the logic of the arguments used in the construction of simple mathematical models for population growth, competition and predator prey relationships
*synthesise evidence of many kinds that animal, fungal and plant communities have evolved in highly structured ways
*show some appreciation of the role of ecological and evolutionary thinking in areas such as conservation and biodiversity
*have some basics skill in obtaining, processing and evaluating ecological data in laboratory and field based practicals.
Content:
Key concepts in evolution, including the nature of evolutionary selection, including kin-selection, sexual selection and natural selection. Dynamics of ecological populations including field and laboratory examples and mathematica l models. Population growth, intraspecifc and interspecific competition and predator/prey relationships. The structure and development of plant, animal and fungal communities are also examined and evidence is described from studies of the limits of simi larity, island biogeography and food webs.


BIOL0013: Directed studies 1

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: Tutorial 100

Requisites:

Aims & learning objectives:
Aims: To give each student experience in the study of biological information and in its written and verbal presentation. After taking this course the student should be able to:
* make appropriate use of the various forms of biological publication
* carry out searches using BIDS and EMBASE
* write and word-process a substantial essay on a biological topic, with appropriately listed references to published literature.
Content:
The course consists of a series of small group sessions with a lecturer and about 6-8 students.


BIOL0014: Directed studies 2

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: Tutorial 100

Requisites: Pre BIOL0013

Aims & learning objectives:
Aims: To give each student experience in the study of biological information and in its written and verbal presentation.After taking this course the student should have further developed the learning objectives of BIOL0013.
Content:
The course consists of a series of small group sessions with a lecturer and about 6-8 students.


BIOL0015: Biochemical problems

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: CW100

Requisites: Pre BIOL0018, Pre BIOL0020, Ex BIOL0096

Aims & learning objectives:
Aims: To develop students' abilities to assimilate compilations of experimental data and to draw valid conclusions from them. After taking the course, the student should be able to:
* study a collection of biochemical observations, such as the Results Section of a publication or simply a series of related observations compiled specifically for the exercise, and assess their significance. Indications of this ability could be, eg answering particular questions or writing the Discussion section of a paper. It is especially important that the student learns to draw only such conclusions as are fully justified by the data.
Content:
Several members of academic staff will participate in the Course, each providing a particular problem. This will be handed out and explained to the class, who will then have some 4 days to provide written answers. These will be m arked and returned.


BIOL0016: Professional training in Biochemistry 1

Semester 2

Credits: 30

Contact:

Topic:

Level: Level 2

Assessment: Placement report 100

Requisites: Pre BIOL0003, Pre BIOL0004

Aims & learning objectives:
Aims:
* to provide experience of the application of biochemistry
* to promote understanding of the principles and practices of working in a professional environment After taking this course the student should be able to:
* undertake and report on a piece of work in an agreed programme
* integrate into a commercial or academic environment
Content:
Laboratory or other professional experience which is deemed suitable by the Director of Studies (Placements).


BIOL0018: Enzymology A

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0003, Pre BIOL0004, Pre CHEY0007

Aims & learning objectives:
Aims: To provide a fundamental basis for understanding the action of enzymes as catalysts, mainly at a physical level, and also those properties of enzymes arising from their nature as protein s. After taking this course the student should be able to:
* understand the nature of steady-state kinetics of simple enzyme-catalysed reactions
* appreciate the influence that protein structure and organisation has on the catalytic and regulatory functions of enzymes.
* understand the requirements of reliable assay procedures, including practical ability.
* discuss the purpose of studies of the transient phase of enzyme-catalysed reactions.
* from simple mechanisms, to derive steady-state rate equations.
* appreciate the role of coenzymes and their underlying basis in heterocyclic chemistry.
* understand reversible inhibition and covalent modification, and the effects of pH on catalytic activity.
Content:
Ligand binding; steady-state and transient kinetics; theories of catalysis; allostery; multienzyme complexes; chemical modification; effects of inhibitors and pH; isoenzymes; heterocyclic chemistry and coenzymes; purification and a ssay


BIOL0020: Physical biochemistry & proteins

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0003, Pre BIOL0004, Pre CHEY0007, Pre CHEY0008

Aims & learning objectives:
Aims: To provide understanding of protein conformation in terms of noncovalent interactions between amino acid side chains, the thermodynamic principles underlying the protein folding proble m. Also to provide understanding of the various physical methods available for the characterisation of biological macromolecules and their application to the study of protein conformation. After taking this course the student should be able to:
* give a qualitative description of the interactions that maintain the native conformation of a protein and determine the stability of the native conformation
* appreciate the structural information that various spectroscopic techniques can give
* understand the structural information that various scattering and diffraction techniques can give.
Content:
Polypeptide chain folding, the role of non-covalent interactions, the protein folding process, denaturation and renaturation, protein conformational change, spectroscopic techniques (UV/visible/IR, Raman, circular dichroism, nmr, e sr), scattering techniques (X-ray diffraction, solution scattering), Microscopy (optical and electron)


BIOL0021: Protein purification

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 CW20

Requisites: Pre BIOL0020, Ex BIOL0097

Aims & learning objectives:
Aims: To provide understanding of the principles and application of the various methods for the purification and characterisation of proteins. To provide understanding of the principles and application of the ultracentrifuge in the biochemistry laboratory. After taking this course the student should be able to:
* plan a purification scheme for the isolation of a protein from various starting materials, taking account of requirements for both purity and yield of the product
* design experiments that involve the use of ultracentrifugation techniques.
Content:
Protein separation by column chromatography based on differences in molecular size, charge, hydrophobicity and specific affinity for ligands; electrophoretic methods for the purification and characterisation of proteins; theory a nd practise of preparative and analytical ultracentrifugation


BIOL0022: Practical biochemistry

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: CW100

Requisites: Pre BIOL0003, Pre BIOL0004, Pre BIOL0006

Aims & learning objectives:
Aims: To provide practical experience of some commonly used molecular biology techniques and to evaluate these in comparison with other available methods so that the students are aware of a range of techniques used for the characterisation of gene structure and gene expression. After taking this course the student should be able to:
* understand how and why these techniques have been applied when they encounter them in journal articles
* consider these methods when they design their own experiments
* develop planning and organisational skills in carrying out a scientific project
* develop data handling and interpretation skills
Content:
The course involves a series of linked experiments that form a mini-project. This begins with the preparation of cellular RNA, its conversion to cDNA and the amplification of gene fragments using the polymerase chain reaction (PCR ). Specific fragments are cloned in a bacterial plasmid, these screened by restriction enzyme digestion and one or two are subject to DNA sequencing. Data interpretation involves DNA sequence analysis and the interrogation of remote nucleic acid databas es, chromosome physical maps and mutational databases. A demonstration of various methods for analysing gene expression is included.


BIOL0023: DNA (making, breaking & disease)

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 CW10 ES10

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To provide understanding of the relationship between DNA synthesis, DNA repair, the animal cell growth cycle and apoptosis. After taking this course the student should be able to:
* give a detailed account of the molecular mechanisms of DNA replication and repair in a variety of living systems
* show how DNA metabolism and cell cycle controls are related to cancer
* give an account of antitumour therapy.
Content:
DNA replication, and where relevant DNA in øx174, E.coli, SV40, and human cells. Cross talk between synthesis, repair and the cell cycle in complex systems. Immortality and carcinogenesis. Site of action of antifolates, fl uorouracil, magic bullets.


BIOL0023: DNA (making, breaking & disease)

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 ES20

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To provide understanding of the relationship between DNA synthesis, DNA repair, the animal cell growth cycle and apoptosis. After taking this course the student should be able to:
* give a detailed account of the molecular mechanisms of DNA replication and repair in a variety of living systems
* show how DNA metabolism and cell cycle controls are related to cancer
* give an account of antitumour therapy.
Content:
DNA replication, and where relevant DNA in øx174, E.coli, SV40, and human cells. Cross talk between synthesis, repair and the cell cycle in complex systems. Immortality and carcinogenesis. Site of action of antifolates, fl uorouracil, magic bullets.


BIOL0024: Cell biology 2

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX100

Requisites: Pre BIOL0005, Pre BIOL0006

Aims & learning objectives:
Aims: To familiarise students with the concepts and vocabulary of key aspects of cell biology. To give students an understanding of current models of how cells attach to and move upon their substrate, how they maintain their composition and shape, how they communicate and how they grow. After taking this course the student should be able to:
* outline and distinguish the roles of carrier proteins and ion channels, and describe current models of their functional mechanisms
* describe the major components of the cytoskeleton and their function in cell integrity, in intracellular trafficking and in cell motility
* differentiate the various types of plant and animal cell-cell junctions
* summarise the major extracellular matrix components in plant and animal tissues and how cell attach to them
* discuss the key signals and mechanisms permitting targeting of protein components to various subcellular locations
* demonstrate knowledge of the major inter cellular signalling systems and intracellular signalling pathways, and also the ways that these are studied
* understand the principles of cellular signal generation, control, recognition, integration and interpretation to generate a response
* extend their knowledge in these areas by reference to primary research articles
Content:
Cell adhesion and the extracellular matrix; membrane transport (carrier proteins and ion channels); intracellular trafficking; cytoskeleton; cell signalling: growth factors and regulation of vertebrate cell proliferation and differ entiation; tyrosine kinase receptors and the MAP kinase intracellular signalling pathway; G-protein coupled receptors and the cAMP and Ca2+ second messenger systems; hormone signalling via the intracellular receptor family.


BIOL0025: Practical molecular biology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: PR80 OR20

Requisites: Pre BIOL0005, Pre BIOL0006

Aims & learning objectives:
Aims: To provide practical experience of some commonly used molecular biology techniques and to evaluate these in comparison with other available methods so that the students are aware of a range of techniques used for the characterisation of gene structure and gene expression. After taking this course the student should be able to:
* understand how and why these techniques have been applied when they encounter them in journal articles
* consider these methods when they design their own experiments
* develop planning and organisational skills in carrying out a scientific project
* develop data handling and interpretation skills
Content:
The course involves a series of linked experiments that form a mini-project. This begins with the preparation of cellular RNA, its conversion to cDNA and the amplification of gene fragments using the polymerase chain reaction (PCR ). Specific fragments are cloned in a bacterial plasmid, these screened by restriction enzyme digestion and one or two are subject to DNA sequencing. Data interpretation involves DNA sequence analysis and the interrogation of remote nucleic acid databas es, chromosome physical maps and mutational databases. A demonstration of various methods for analysing gene expression is included.


BIOL0026: Recombinant DNA techniques

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: PR100

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To introduce some of the basic practical skills and techniques of recombinant DNA technology. To work independently and evaluate their own data. To learn to integrate theory and prac tice in genetic modification. To gain an insight into the exploitation of microbes as genetic model systems. After taking this course the student should be able to:
* appreciate the interrelationship between intellectual and manual skills in experimental science
* understand the need for care and attention to detail in experimental work
*use a range of basic molecular-biological methods and equipment
* plan their time carefully in order to be able to carry out experimental work efficiently
Content:
Basic cloning techniques: isolation of plasmid and lambda DNA, restriction of digestion, ligation, transformation into E. coli, biological and physical analysis of recombinant clones.


BIOL0027: Animal reproduction

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0010

Aims & learning objectives:
Aims: To explain the structure and differentiation of the reproductive system in vertebrates, including humans, and how it is controlled in order to produce eggs, sperm and offspring and the a ppropriate time of year. Practical classes will illustrate the material discussed. After taking this course the student should be able to:
* have a clear understanding of different reproductive strategies, the anatomical structures involved, the environmental conditions and hormones that control reproductive physiology and how these hormones themselves are regulated.
Content:
Reproductive strategies; the differentiation of reproductive systems; male and female reproductive anatomy and physiology in mammals; pregnancy, parturition and lactation; in vitro fertilisation and other medical interventions; rep roductive physiology in selected birds, reptiles, amphibians and fish. In the practical classes students will have the opportunity to examine whole specimens and slides of different reproductive organs and to interpret data from scientific papers dealing with reproduction.


BIOL0028: Cellular neurobiology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0006, Ex BIOL0099

Aims & learning objectives:
Aims: To provide an introduction and broad overview of cellular neurobiology which should serve as a basis for more in-depth study in final year courses. After taking this course the student should be able to:
* give a general description of the organisation of the nervous system including the basic anatomically subdivisions
* relate neuronal cell structure with function
* discuss the similarities and differences between receptor classes and their association with various signalling cascades
* describe the principles of electrical signalling in neurons including the properties of ion channels
Content:
A brief description of basic aspects of neuronal development and anatomy: the cells of the nervous system; the subcellular architecture of neurons including features in common with other cells and unique aspects such as axons, dend rites, synaptic vesicles and the neuronal cytoskeleton; synaptic transmission and intercellular communication; and signalling in the nervous system including the electrical properties of neurons, resting and action potentials and ion channels.


BIOL0029: Insect biology

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0009

Aims & learning objectives:
Aims: To provide an introduction to the biochemistry, physiology, morphology and behaviour of insects, particularly in relation to their role as crop pests and the development of methods of co ntrol. After taking this course the student should be able to:
*define the elements of structure and function that have contributed to the diversity and numerical success of insects
*identify aspects of insect biochemistry, physiology and behaviour that provide or potentially could provide targets for exploitation in pest control.
Content:
Insect classification and types of post-embryonic development; characteristics of the major orders of insects; polymorphism as found in aphids and locusts; biochemistry and physiology of some major life systems; insect plant relati ons; a survey of chemical pesticides - chemical classes, mode of action and mechanisms of resistance; biological pest control.


BIOL0030: Plant biochemistry

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR/CW20

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To introduce some important aspects of plant metabolism and their role in the functioning of the whole plant. After taking this course the student should be able to:
* understand how plants (by definition static) are able to utilise light energy for the biosynthesis of important biomolecules, yet cope with the potential problems posed by excess solar radiation and drought.
* understand how plant protection systems will not only explain plant survival in an ever changing environment, with the possibility of animal predation, but also how the disruption of proteins and detoxification systems can lead to plant death via he rbicides.
Content:
Utilisation of light energy in photosynthesis; CO2 incorporation; carbohydrate synthesis, storage and breakdown; the metabolism of stored carbohydrate to yield energy (respiration) and intermediary metabolites; the function and me tabolism of lipids; pigments, with particular reference to porphyrins and carotenoids. Emphasis will be placed on sites where herbicides disrupt normal metabolism and biochemical protective and detoxification mechanisms (e.g.cytochrome P-450) in plants. Practical sessions provide experience in the use of a variety of techniques for the study of plant processes. An equivalent period of directed study will be provided for students who already have adequate experience of practical biochemistry.


BIOL0031: Plant biotechnology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To introduce the techniques used in Plant Biotechnology and discuss their applications in Crop Production and Protection. After taking this course the student should be able to
* understand the role that biotechnology and recombinant DNA techniques play in the development of novel plant genotypes:
Content:
This unit introduces the methods of plant tissue culture, genetic transformation and regeneration. The techniques of Agrobacterium - mediated and direct transformation e.g. particle bombardment are described. Applications of plant genetic engineering are discussed with examples drawn from a wide range of Crop Production and Protection situation e.g. manipulation of floral development; fruit ripening; pest and disease resistance. The socioeconomics of Plant Biotechnology a s well as its role in germplasm conservation is discussed. Practical sessions provide experience in the use of tissue culture and transformation techniques in the study of Plant Development and Biotechnology.


BIOL0032: Plant pathology

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0009

Aims & learning objectives:
Aims: To provide an understanding of the biology and control of the major groups of fungal and bacterial plant pathogens. To introduce the physiological, biochemical and genetical basis of host-parasite interactions. After taking this course the student should be able to:
* name the major groups of fungal and bacterial plant pathogens and describe their key biological features and methods of controls
* understand the molecular and biochemical basis of host-pathogen interactions
* be able to describe the modes of action of key fungicides
Content:
Pathogens' strategies and modes of nutrition; the biology, disease cycles and control via host resistance, fungicides and cultural practice of the major groups: plasmodial fungi eg clubroot; Phytophthora species; downy milde ws; powdery mildews; vascular wilt fungi; smuts; rusts bacterial pathogens. The concept of disease management and integrated control. The genetic basis of host-parasite interactions; host resistance mechanisms. The mathematical modelling of plant disea se epidemics and the relationship between these models and practical disease forecasting. Fungicide modes of action and resistance.


BIOL0033: Bacteriology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0008

Aims & learning objectives:
Aims: To give students an appreciation of the diversity and importance of bacteria, their ecology and associated physiology, their isolation, characterisation and classification, and their i nfluences on mankind. It also provides training and quantitative experimental/investigative experience in mainstream bacteriology. After taking this course the student should be able to:
* understand the dynamics of bacterial population growth and how this can be quantified
* know how bacteria can be inactivated and extinguished
* be familiar with procedures (ranging from phenotyping to genotyping) for characterising and recognising bacteria
* have an outline knowledge of the 'Bergey' system for bacterial classification
* describe the main features of some key groups of bacteria and have more detailed knowledge of selected examples with medical, veterinary, environmental, public health and food industry relevance
Content:
Population growth dynamics, with emphasis on batch liquid culture systems; chemical and physical methods for inactivating and eliminating bacteria - heat sterilisation, filtration, antiseptics, disinfectants; characterisation and c lassification of bacteria, the 'Bergey' system; properties of main groups of bacteria; more detailed consideration of organisms of ecological and public health significance, food and water-borne human pathogens, and agents of plant disease. Practical ses sions include quantitative experiments on bacterial growth, bacterial isolation from natural sources and demonstration of some biochemical properties; methods for bacterial characterisation, from traditional tests to state of the art rapid and miniaturise d procedures.


BIOL0034: Virology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To introduce students to the basic characteristics of viruses, both as microorganisms and as agents of disease of animals and plants. After taking this course the student should be able to:
* define the main characteristics of plant and animal viruses
* know how to detect and identify viruses
* understand the role of viruses in disease
* recognise the importance of new and emerging virus infections
* appreciate how some viruses spread and are controlled
Content:
The physical, chemical and biological properties of viruses; the life cycle and replication strategies of representative RNA and DNA viruses; the effects of viruses, including methods of pathogenesis, at the whole organism, cellula r and biochemical levels; principles of virus detection and disease diagnosis; virus transmission, ecology and control; emerging viruses and novel virus-like agents. Practical sessions introduce common methods for identification and characterisation of vi ruses.


BIOL0035: Genes & development 1

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX100

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To introduce the study of animal development, making use of the three most important animal models viz. Xenopus, Drosophila and the mouse, to demonstrate basic embryological conc epts and the functions of developmentally important genes. After taking this course the student should be able to:
* demonstrate a knowledge of the descriptive embryology of the three model species.
* demonstrate a knowledge of selected methods for the study of gene expression, overexpression and ablation.
* discuss how information from anatomy, molecular biology and genetics can be integrated in the explanation of a particular developmental process.
Content:
Xenopus development covering normal development, fate mapping, specification map, induction, morphogen gradients, DV patterning in egg, mesoderm induction, dorsalisation, neural induction, AP patterning. Drosophila developme nt covering normal developmental genetics, dorsoventral and anteroposterior patterning. Mouse development covering gametogenesis and fertilisation, normal pre and post implantation development, ES cells, transgenesis and targeted mutagenesis. Cell adhes ion. Extracellular matrix. Cell movement and morphogenesis.


BIOL0036: Genes & development practicals

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: PR100

Requisites: Pre BIOL0035, Ex BIOL0100

Aims & learning objectives:
Aims: To introduce students to the appearance of Xenopus, insect and mouse embryos; to the use of dissecting and compound microscopes; to simple microsurgical procedures and to immuno histochemistry and in situ hybridisation. After taking this course the student should be able to:
* recognise the stages of Xenopus and mouse embryos.
* carry out simple experiments on Xenopus embryos.
* relate the appearance of two dimensional microscope sections to three dimensional embryos.
* identify selected Drosophila mutants
* carry out immunohistochemical or in situ hybridisation procedures
Content:
12 laboratory practical sessions: sorting and staging Xenopus embryos; embryo culture; maternal inheritance; simple micromanipulations; interpretation of sections; morphology of insect embryos; isolation of preimplantation m ouse embryos; analysis of a gene trap ES cell line; in situ hybridisation and immunohistochemistry.


BIOL0037: Crop protection & weed biology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX80 PR20

Requisites:

Aims & learning objectives:
Aims: To provide an understanding of the measures which can be taken to prevent losses of crops due to the effects of pest, diseases and weeds. Approaches range from those used in developed countries, often based on sophisticated technology involving application of pesticides and herbicides, to low cost cultural methods more practicable in developing countries. After taking this course the student should be able to:
* decide upon optimal strategies for controlling pests, diseases and weeds
* evaluate the risks involved in a control method and be aware of relevant legislation
* identify key UK weed species
Content:
The history, principles and practice of protection of crop plants from parasitic microorganisms, pests and competing weeds; biological physical and chemical approaches to crop protection; pesticides and herbicides, their design, sc reening, formulation and application; legislation; strategic and safe use in view of non-target organisms; development of pest and herbicide resistance and environmental pollution; integrated control measures. Practical sessions include identification of weed plants and excursions to conventional and organic farms to study methods of weed and pest control.


BIOL0038: Environmental physiology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX100

Requisites: Pre BIOL0012

Aims & learning objectives:
Aims: To explore how organisms respond to their environment. After taking this course the student should be able to:
* understand the versatile developmental and physiological responses of indeterminate life forms to a changeable environment, with specific reference to the roles of fungi as decomposers, parasites and partners of living, dying and dead trees or parts of trees.
* demonstrate understanding of the cellular and physiological mechanisms by which animals sense change in their environment, and co-ordinate developmental, physiological and behavioural responses to environmental change.
* demonstrate how environmental toxicants affect some physiological and cellular mechanisms and mechanisms by which organisms may show tolerance.
Content:
Fungi and trees as complex, developmentally indeterminate, responsive systems; factors influencing colonisation and decay of wood; fungal colonisation strategies in living trees - interactions between fungal and tree responses; fun gal colonisation of detached wood and leaves - interfungal interactions and foraging mechanisms; insect-fungal interactions; formation and function of mycorrhizal associations. Bacterial chemotaxis as an example of sensorimotor function; structure and function of animal sense organs; nervous and endocrine encoding of sensory information; central modulation of sensory function; extraordinary sensory modalities (eg electroreceptio n); pheromones, kairomones and allomones, biological clocks - phenomenology, properties, cellular and systems location, genetic analysis. Impacts of environmental pollutants on animals, plants and microorganisms in terrestrial and aquatic environments. The accumulation of environmental toxicants by living organisms. What are the consequences of accumulation? (heavy metals as examples). Interactions between toxicants during exposure to mixtures of toxicants. Mechanisms and processes to reduce toxicity. Organochlorines and hydrocarbons as pollutants.


BIOL0039: Autumn field course

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: CW100

Requisites: Pre BIOL0012

Aims & learning objectives:
Aims: To enhance students' awareness of the diversity of forms and behaviours to be found in natural populations and communities of organisms and of how the patterns in which this diversity oc curs may be studied, described and understood. After taking the course the student should be able to:
*know how to find and identify a variety of kinds of organisms within their natural habitats
*know how to characterise distribution patterns using qualitative and quantitative methods and sampling procedures including conventional descriptive, mapping, quadrat, transect and trapping techniques and estimates of fractal dimension
*recognise the influence of selection on distribution patterns
*begin to question and understand how distribution patterns may arise from dynamic processes of energy transfer and feedback within and between living systems and their environment
*have developed presentational skills enabling them effectively to convey, discuss and analyse ideas and information about natural diversity.
Content:
Two members of academic staff spend six days in full-time residence with students at a suitable location in the south west of the UK. This involves visits to intertidal, sand dune, coastal grassland, moorland/heathland, salt marsh and woodland habitats; sampling, identification, descriptive and recording methods for plants, animals and fungi; data presentation and analysis using statistical and non-linear mathematical approaches; consideration of evolutionary and ecological relati onships between genotypes, phenotypes and environment; investigative project; oral and written discourse. Students are required to make a financial contribution to the field course (currently £95)


BIOL0040: Concepts in ecology & evolution

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX100

Requisites: Pre BIOL0012

Aims & learning objectives:
Aims: To develop an understanding of the nature of selection; stability and instability in living systems; the parallels and disparities that exist between pattern generating processes operat ing across and within kingdom boundaries, in relation to development and behaviour; the role of self-organisation in evolution; population dynamics and conservation; behavioural ecology and optimal foraging theory. After taking this course the student should be able to:
*utilise concepts from natural selection theory, kin selection theory, optimisation theory, behavioural ecology, community biology, ecological genetics and non-linear systems theory (including chaos theory) in understanding ecological and evolutionary issues
*understand the nature of probabilistic, deterministic and random processes, and discuss their role in ecology and evolution
* understand the role of self-organisation in social insects.
Content:
The role of selection in evolution; agents of selection; units of selection; selection and adaptation; selection and fitness; natural selection and kin selection; genetic drift. Stability and instability of living systems; concept s of niche; competition, symbiosis, ecological strategies and self/non-self. Conservation and habitat fragmentation; exploiter mediated co-existence. Optimality in ecology and evolution; optimal foraging theory; self organisation; division of labour and the super-organism; battle strategies in social insects.


BIOL0041: Spring field course

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: CW100

Requisites: Pre BIOL0012

Aims & learning objectives:
Aims: To introduce the student to natural habitats in ways that enable the students to recognise patterns of distribution and behaviour of organisms and to question the basis of these patterns and behaviours. To introduce the student to the use of appropriate sampling patterns, experimental design, data gathering and statistical analysis. After taking the course the student should be able to:
*appreciate how aspects of behavioural ecology and of community structure can be investigated
*understand how these behaviours and structure may have arisen and how they are maintained
*design and perform a short field-based investigation; analyse and graphically present data
*prepare a written report of field-based investigations.
Content:
Visit to ecosystem types of varying complexity and subject to different kinds of selection process, such as rocky shore, sand dune, coastal grassland, salt marsh, woodland, moorland and fresh water. Investigation of components of these ecosystem types including spatial distribution, size and age distributions, reproduction and behaviour. Each student designs and carries out a half-day and a two-day field-based investigation; a preliminary report of the two-day investigation is p resented as a short talk on the last day of the field trip; the data from the investigations are analysed and graphically presented using University computing facilities after the field trip. Students are required to make a financial contribution to the f ield course (currently £95)


BIOL0042: Investigative project

Semester 1

Credits: 12

Contact:

Topic:

Level: Level 3

Assessment: OT100

Requisites:

Aims & learning objectives:
Aims: To provide students with skills in planning and undertaking a scientific investigation, analysing and interpreting findings and reporting the outcome. After taking this course the student should be able to:
*appreciate the intellectual, time- and resource-management and technical requirements for productive, rigorous and responsible scientific investigation and reporting
*have gained experience of scientific writing at the level of a primary research paper and/or review
*have acquired technical, time and resource management, analytical, interpretative and literature-accessing skills appropriate to the undertaking and presentation of their project
*have contributed to knowledge.
Content:
Selection and definition of a problem that can be investigated effectively within constraints of safety, time and resources; strategic planning; gathering, processing, analysis and interpretation of information; literature searchin g and reviewing; scientific writing and presentation.


BIOL0042: Investigative project

Semester 2

Credits: 12

Contact:

Topic:

Level: Level 3

Assessment: OT100

Requisites:

Aims & learning objectives:
Aims: To provide students with skills in planning and undertaking a scientific investigation, analysing and interpreting findings and reporting the outcome. After taking this course the student should be able to:
*appreciate the intellectual, time- and resource-management and technical requirements for productive, rigorous and responsible scientific investigation and reporting
*have gained experience of scientific writing at the level of a primary research paper and/or review
*have acquired technical, time and resource management, analytical, interpretative and literature-accessing skills appropriate to the undertaking and presentation of their project
*have contributed to knowledge.
Content:
Selection and definition of a problem that can be investigated effectively within constraints of safety, time and resources; strategic planning; gathering, processing, analysis and interpretation of information; literature searchin g and reviewing; scientific writing and presentation.


BIOL0043: Biological data interpretation

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To provide experience of the interpretation of biological data. After taking this course the student should be able to:
*understand and interpret information on biological phenomena, using quantitative (numerical) and qualitative (text or image) sources
*make logical statements and reach sound conclusions from biological data
*be aware of the limits of interpretation and be capable of selecting suitable statistical tests
* interpret the outcome of a statistical test on biological data.
Content:
The course comprises a series of assignments and problems which are undertaken by the students and then analysed and discussed in weekly workshops. Using examples which illustrate different types of biological information, the cou rse covers the interpretation of simple data sets, data transformation, graphical presentation, interpretation of trends, selection of appropriate statistical tests for particular data sets. As far as possible, the examples are generic, designed to be c apable of interpretation without a requirement for in depth understanding of any particular area of biology.


BIOL0044: Clinical neurochemistry

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX80 CW20

Requisites: Pre BIOL0028

or Pre BIOL0099 Aims & learning objectives:
Aims: To provide an understanding of the neurochemical basis of brain disorders, their causes and treatments. After taking this course the student should be able to:
* describe a number of brain disorders in terms of their neurochemistry;
* comprehend the gross regional anatomy of the human brain;
* distinguish "psychiatric" and "neurological" disorders.
Content:
Methods of studying human brain dysfunction; The altered neurochemistry of a number of diseases and addiction will be reviewed, with consideration of their causes, symptoms, diagnosis, treatment and prevention. Discussion of the mind versus brain question; Video presentations will illustrate some of the clinical conditions.


BIOL0045: Cell membranes

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 PR20

Requisites: Pre BIOL0024

Aims & learning objectives:
Aims: To introduce the student to the principles governing the structure and function of biological membranes. To introduce the principles governing the structure of the lipid bilayer and th e topological arrangement of proteins in the membrane. To introduce the principles and mechanisms involved in the transport of solutes across cell membrane. To introduce the student to mechanisms involved in sorting membrane proteins to specialised subc ellular compartments. To provide an understanding of the overall importance of membrane processes in cellular function. After taking the course the student should be able to:
*outline how membrane lipids and proteins are structurally organised in the membrane
*describe how ions and sugars are transported across membranes
*describe the mechanisms by which membrane proteins are sorted into specialised subcellular compartments and the routes by which membrane trafficking occurs.
Content:
Functions and common structural feature of membrane lipids and proteins. Case study of the erythrocyte membrane proteins. Lateral diffusion of membrane components. Common features of membrane transporters for ions and neutral mo lecules together with the specialised features that provide substrate specificity. Simple kinetic features of the membrane transport process. Mechanisms for membrane vesicle budding and fusion and the functional significance of these processes in terms of membrane protein sorting and trafficking.


BIOL0046: Proteins & immunochemistry

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 PR20

Requisites: Pre BIOL0020

Aims & learning objectives:
Aims: To provide an understanding of the molecular basis of antibody function and the principles of their application in immunochemical techniques. To provide an understanding of the signif icance of protein:protein and protein:nucleic acid interactions. After taking this course the student should be able to:
*understand the molecular basis for antigen:antibody interaction
*appreciate the role of antibody as a component of the immune system
*understand the basis of specific immunochemical methods and their applications
Content:
Overview of the immune system and the biological role of antibodies, structure of an antibody molecule and its relationship to antigen-binding and effector functions, principles of immunochemical techniques, protein:protein interac tions and their importance for the function of oligomeric proteins, protein:nucleic acid interactions and their relevance to restriction enzymes and repressors.


BIOL0047: Carbohydrate polymers

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX80 PR20

Requisites: Pre BIOL0003, Pre BIOL0004

Aims & learning objectives:
Aims: To provide an understanding of the principles of carbohydrate conformation and of chemical synthesis of simple oligosaccharides as a basis for structural analysis. To teach methods of structural analysis of complex oligosaccharides. To outline the structure, biosynthesis and metabolic importance of glycogen, of glycoproteins and of mucopolysaccharides. After taking the course the student should be able to:
*understand the principles of conformational analysis as applied to monosaccharides
*appreciate the methods and applications of chemical synthesis of oligosaccharides
*give an account of the means by which glycogen metabolism is regulated by the hormones adrenalin and insulin and by metabolic substrates
*describe the structure and function of mucopolysaccharides
* understand the basic structural pattern of glycoproteins and how these may be determined
* outline the pathways of glycoprotein biosynthesis and discuss their function
Content:
Topics: Conformational analysis; simple chemical approaches to oligosaccharide synthesis, glycogen structure, biosynthesis and catabolism; regulation of glycogen metabolism by hormones; inborn errors of carbohydrate metabolism; re lationship between mucopolysaccharide structure and function and distribution; common structural patterns of glycoproteins; methods of structural analysis of carbohydrate polymers and glycoprotein carbohydrates; general distribution of glycoproteins, bios ynthesis and functions.


BIOL0048: Enzymology B

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX80 PR20

Requisites: Pre BIOL0018

Aims & learning objectives:
Aims To provide an outline of the various approaches that may be used to elucidate the mechanism of enzyme action, illustrating these with specific examples. After taking this course the student should be able to:
*understand how information on kinetics and protein chemistry and structure can be used to provide mechanistic evidence.
*appreciate general approaches and specific types of catalysis in the context of enzyme mechanisms.
Content:
the course addresses the methods used to study end elucidate mechanisms of enzyme catalysis. Three aspects of evidence are discussed. 1) Study of the overall reaction 2) Study of enzymes as proteins 3) Use of non-enzymic models. These approaches are applied to case studies of individual enzymes: ATP citrate lyase, citrate synthase, acetoacetate decarboxylase, ribonuclease and chymotrypsin


BIOL0049: Biochemical parasitology

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites: Pre BIOL0018, Pre BIOL0055

Aims & learning objectives:
Aims: To examine the biochemical adaptations required for existence as a successful parasite. After taking this course the student should be able to:
*understand the definition of a parasite and give examples of important human parasitic diseases.
*appreciate the metabolic constraints caused by occupancy of this niche and the effects that parasitic infections and infestations have on the host
*note unique aspects of parasite molecular biology & physiology.
Content:
Parasitology: protozoan and helminth biochemistry and molecular biology. Its modifications in parasites. The modes of action of anti-parasite drugs and what these tell us about target metabolism.


BIOL0050: Biochemical problems

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0015, Pre BIOL0048

Aims & learning objectives:
Aims: To develop students' abilities to assimilate compilations of experimental data and to draw valid conclusions from them. After taking the course, the student should be able to:
*study a collection of biochemical observations, such as the results section of a publication or simply a series of related observations compiled specifically for the exercise, and assess their significance. Indications of this ability could be, e.g. answering particular questions or writing the discussion section of a paper. It is especially important that the student learns to draw only such conclusions as are fully justified by the data.
Content:
Several members of academic staff will participate in the course, each providing a particular problem. This will be handed out and explained to the class, who will then have some 4 days to provide written answers. These will be m arked and returned.


BIOL0051: Laboratory project

Semester 2

Credits: 12

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0018, Pre BIOL0021

Aims & learning objectives:
Aims: To provide an understanding of the principles of advanced laboratory practice with emphasis on the choice of analytical systems and development of team based research. After taking this course the student should be able to:
*elucidate defined biochemical problem by designing appropriate practical experiments.
Content:
Could include molecular biology, enzymology, protein separation, immunochemistry.


BIOL0052: Scientific communication

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0015

Aims & learning objectives:
Aims: To examine good and bad practice in communicating science to a variety of professional and lay audiences using written and oral methods. After taking this course the student should be able to:
* communicate new findings in biochemistry to professional, student and lay audiences. They will have produced an education poster suitable for use by "A" level or first year undergraduate students, written a 1,000 word article for publication in the science section of a broadsheet national newspaper and given a short "journal club" oral presentation explaining a recent biochemical paper to an advanced scientific audience. Contents: Students are required to produce three pieces of work for assessment: 1.An education poster suitable for "A" level students or first year undergraduates. 2.A 1,000 word article on a recent advance in the biochemical sciences. 3.A 10-12 minute "journal club" presentation on a recent article in the biochemical literature. The presentation should summarise the paper and its significance and should critically evaluate the methods used, the results obtained and their interpretatio n.


BIOL0053: Professional training in Biochemistry 2

Semester 2

Credits: 30

Contact:

Topic:

Level: Level 3

Assessment: OT100

Requisites: Pre BIOL0016

Aims & learning objectives:
Aims:
* to provide experience of the application of biochemistry
* to provide a second placement experience, thereby building upon and extending the skills, techniques and knowledge gained in the second year.
* to promote understanding of the principles and practices of working in a professional environment After taking this course the student should be able to:
* undertake and report on a piece of work in an agreed programme
* integrate into a commercial or academic environment
Content:
Laboratory or other professional experience which is deemed suitable by the Director of Studies (Placements).


BIOL0055: Genes & genomes

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0023, Pre BIOL0007

Aims & learning objectives:
Aims: To provide an advanced study of genome structure and expression in eukaryotes. After taking this course the student should be able to:
*appreciate the complexities of gene regulation and the various stages at which expression is regulated
*review the ways in which mRNA differs from the primary transcript.
*know how to use genome structural information to distinguish between individuals
*devise a strategy for the identification and mapping of genes.
Content:
Genome structure and mapping (genetic & physical). Repetitive DNA, its origins and use in DNA fingerprinting. Assembly of the eukaryotic RNA synthetic machinery and its regulation by transcription factors. Chromatin remodelling in transcription. RNA splicing, editing and other modifications and their control.


BIOL0056: Plant molecular biology

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To introduce recent work on plant development and genetics as elucidated by a molecular approach. To demonstrate the importance of genes and gene expression in the development and lif e-cycle of the plant as a whole. After taking this course the student should be able to:
* demonstrate an in-depth knowledge of key topics of plant genetics and development.
* critically evaluate experimental evidence within this field.
* understand the importance of a molecular approach, amongst others, to elucidating aspects of plant biology.
Content:
The course examines plant gene-structure, gene-expression and molecular aspects of development. Topics include: plant genome size and repetitive DNA; plant transposable elements; the chloroplast and mitochondrial genomes; male ste rility; epigenetics, plant development; self-incompatibility; embryogenesis and seed formation; fruit ripening; seed germination.


BIOL0057: Cell growth & proliferation

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0023, Pre BIOL0024

Aims & learning objectives:
Aims: To provide an understanding of the principles of cell growth and division, the differences between prokaryotes and eukaryotes, the different constraints on free-living and metazoan cel ls, and the regulation of the cell cycle. After taking this course the student should be able to:
*give quantitative interpretation of growth curves
*account for the regulation and dependency relationships in cell cycles
*give an account of the control of DNA replication in cells
*give an account of the cell cycle controls that ensure ordered progress of the cell cycle
*show how genetics and biochemistry have been used to elucidate the cell cycle
*relate cell cycle principles to the causes of cancer
*show how an understanding of the molecular biology of cell cycle controls is providing therapeutic insights into the treatment of cancer.
Content:
Topics: Methods for analysing growing cells and proliferating cell populations; batch culture; continuous culture; Escherichia coli cell cycle; cell cycle of yeasts; cell cycle of metazoan cells and cancer; specialised semin ar topics presented by each participating member.


BIOL0058: Microbial genetics

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0023

Aims & learning objectives:
Aims: To provide an overview of prokaryotic and eukaryotic genetic systems, to relate the genetics of microorganisms to their wider biological role, and give an indication of the diversity o f genetic systems. After taking this course the student should be able to:
*compare critically methods of mapping genes in both prokaryotes and eukaryotes
*understand the unity and diversity amongst bacterial plasmids
*explain the mechanism and implications of transposition
*provide a critical understanding of the molecular basis and types of recombination
*provide an account of the development of bacteriophage lambda with an understanding of the regulation of promoters and the nature of a genetic switch
*relate the possible evolutionary relationships between different replicating genetic elements.
Content:
Topics: Advanced Mendelian genetics; recombination and repair; mitotic analysis; extranuclear genetics of yeasts; genetics of bacterial plasmids; genetics and development of bacteriophage lambda; specialised seminar topics presente d by each participating member.


BIOL0059: Insect-microbe interactions

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0029

Aims & learning objectives:
Aims: To provide an insight into the nature of symbioses between insects and their microbial flora - from commensal through parasitic to mutualistic association; to provide an understanding of the nature of the diseases in insects caused by bacteria, fungi and viruses; to explore the basis of immunity and host defence against microbial pathogens; to demonstrate some of the complexity of the mutualistic associations that have evolved between in sects and their flora. After taking this course the student should be able to:
*discuss the concepts of pathogenesis, virulence and specificity as they relate to microbial pathogens of insects
*compare and contrast the strategies used by different types of microbial pathogen of insects
*define the strengths and weaknesses of insect immune systems
*compare and contrast insect and vertebrate immune systems
*define criteria for establishing a mutualistic role for a micro-organism.
Content:
Concepts of symbiosis; ice nucleating agents and insect cold hardiness; mechanisms of fungal pathogenesis in insects - host recognition, host invasion, role of toxins, molecular approaches to the study of virulence; entomopathogeni c bacteria; endotoxins from Bacillus thuringiensis and B. sphaericus; entomopathogenic viruses - overview, baculoviruses, polyDNA viruses, host immunity - cuticle and gut barriers, cellular defence, humoral defence, immune proteins, compari son with vertebrate systems; mutualism - exogenous mutualists, cellulose digestion, intracellular mutualists.


BIOL0060: Neurobiology - systems

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites: Pre BIOL0028

Aims & learning objectives:
Aims: To provide an understanding of some holistic systems in neurobiology to illustrate the integrated functioning of the nervous system After taking this course the student should be able to:
*describe a number of integrated neuronal systems in terms of their physiology and neurochemistry
Content:
Model systems: Aplysia, C. elegans; Sensory systems: pain, vision; Memory: Plasticity & LTP; Motor control; Language & Lateralisation.


BIOL0061: Topics in endocrinology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites:

Pre: BIOL0027 recommended but not essential Aims & learning objectives:
Aims: To study selected endocrinological topics in depth After taking this course, the student should be able to:
* discuss evidence of hormone evolution
* understand and be able to discuss methods used in hormone research
* appreciate the effects of hormones on aspects of behaviour and physiology and how hormones are regulated
Content:
Techniques used in endocrine research; the biosynthesis of hormones from larger precursors; the hypothalamo-pituitary axis; the neuroendocrinology of stress; the behavioural effects of hormones, including the regulation of appetite and sexual behaviour; the pineal gland and melatonin; medical endocrine problems and hormone therapy


BIOL0062: Fungi & people

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES15 OR5

Requisites: Pre BIOL0008

Aims & learning objectives:
Aims: To provide students with an understanding of the many ways (excluding those due to diseases of crops, which are covered in other units) in which fungi either are, or may in future be, o f direct relevance to the quality of human life. After taking the course, the student should be able to:
*categorise and describe the ways in which fungi are of practical and cultural importance to people
*describe current methods of controlling and making use of fungi
*identify the intellectual and technological constraints which presently limit ability to control and make use of fungi
*identify opportunities available for the future practical application of fungal properties.
Content:
Toxic fungi - mycetisms and mycotoxicoses and their relevance in human traditions and the aetiology of human and animal diseases; cultivation of fungal fruit bodies and mycelium as sources of food; use of fungi in production of fer mented foods and beverages, including cheese making and koji processes; industrial use of fungi in the discovery and production of useful compounds, including pharmaceuticals, organic acids and enzymes; fungal infections of people and animals (mycoses); f ungi as agents of biodeterioration and biodegradation; fungi and pollution; future uses of fungi - constraints and opportunities.


BIOL0063: Microbial physiology

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0033

Aims & learning objectives:
Aims: To introduce principles of microbial pathogenicity (of humans), with particular regard to the roles of the cell envelope and bacterial toxins. To present detailed aspects of the physi ological and biochemical processes involved. After taking this course the student should be able to:
* have a sound understanding of a range of physiological properties and biochemical mechanisms, particularly in relation to bacterial pathogenicity towards humans
Content:
Introduction to microbial pathogenicity; iron transport and the bacterial cell membrane; the mechanisms of cell adhesion; bacterial biofilms - their nature, formation and involvement in health problems; an introduction to bacteria l toxins and their role in disease; structural properties and detection of toxins; cell envelope structural components and their role in vaccine development; E. coli H0157, an important 'new' pathogen; AIDS.


BIOL0064: Plant-microorganism interactions

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0032

Aims & learning objectives:
Aims: To provide an understanding of the processes involved in infection and colonisation of plants by parasitic microorganisms which lead to disease. To detail the chemical signals exchang ed between the two species as key components of recognition events. To reveal the potential range of defences of plants: constitutive, induced non-specifically by damage, or specifically by pathogens. After taking this course, the student should be able to:
*understand the biochemical and physical factors which determine the outcome of interactions between microorganisms and plants
*appreciate how pathogens can avoid, negate or suppress host defences
*recognise different strategies by pathogens for obtaining nutrients from plant hosts
*appreciate alternative strategies for control of plant diseases.
Content:
Constitutive resistance based on existing structural barriers such as cuticle, secondary cell walls and on antimicrobial chemicals such as saponins and phenolics; detoxifying enzymes; toxin binding sites. Induced resistance compris ing formation of physical barriers such as new or altered cell walls, vascular occlusions, de novo synthesis of phytoalexins. Triggering of defence by stress or wounding, microbial elicitors or a recognition event. Infection structures of pathogen ic fungi. Pathogenicity determinants including depolymerases, toxins, polysaccharides, siderophores, detoxifying enzymes; their structure, modes of action and role. Contrasting strategies of obligate biotrophs and facultative necrotrophs.


BIOL0066: Bacterial ecophysiology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0033

Aims & learning objectives:
Aims: To introduce the concept of ecophysiology as an interface of physiology with ecology and to examine in detail the physiological traits of certain types of bacteria in relation to their habitat and mode of life. After taking this course the student should be able to:
* have developed an appreciation of the ecophysiology of some environmentally significant organisms
*have a detailed understanding of the mechanisms and specialised activities involved in aspects as diverse as, eg buoyancy regulation, nitrogen fixation, starvation survival, and life at nature's extremes
Content:
A review of bacterial fixation of nitrogen; oxygen relations of nitrogenase, with emphasis on protection strategies and the exquisite sophistication of the cyanobacterial heterocyst; symbiotic nitrogen-fixing associations, cyanobac terial and rhizobial; bacterial movement (flagellar and gliding), tactic responses; buoyancy regulation, gas vesicle physiology; adhesion to surfaces, biofilms and their control; responses to low nutrient levels, ultramicrobacteria; prosthecate bacteria; bacterial endospores, their differentiation and resilience; bacterial life in extremes of pH, temperature, hydrostatic pressure and water availability.


BIOL0067: Genes & development 2

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0035

Aims & learning objectives:
Aims: To provide an advanced course in developmental biology that will communicate the excitement of recent research advances After taking this course the student should be able to:
*understand the basic principles underlying invertebrate development and organogenesis in higher organisms
*relate the mechanisms of development to cellular and molecular events
*understand the applications and implications of research in developmental biology to human developmental defects
Content:
This course builds on BIOL0035 to give a comprehensive grounding in developmental biology. The vertebrate development lectures will cover HOX genes, somitogenesis, myogenesis, neural development, epithelial-mesenchymal interactio n, limb development and regeneration, and developmental defects. Invertebrate model organisms are increasingly being used for molecular genetic analysis of genetic systems important in human medicine. We shall introduce the important model organism C aenorhabditis elegans and extend the analysis of Drosophila development to include the mechanism of segmentation and the patterning of the imaginal discs.


BIOL0069: Plant development

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites:

Pre: BIOL0038 or BIOL0031 Aims & learning objectives:
Aims: To provide a molecular genetic description of the main developmental pathways operating within the higher plant life cycle and to illustrate the principal experimental techniques used in plant developmental b iology. After taking this course the student should be able to:
* understand the principal mechanisms that 1) regulate body plan specification in plants 2) pattern the flower and the root and 3) regulate leaf development
* describe the processes of cell and tissue differentiation at the molecular genetic level
* design experimental approaches to investigate developmental pathways in Arabidopsis
Content:
The course starts by contrasting life cycle and styles of higher plants with that of animals; next we consider the establishment of the basic body plan of plants and again contrast the mechanisms adopted in plants with that of vari ous animal models. The various molecular genetic techniques used in plant development research are then described and illustrated with a focus on plant embryogenesis. Cell fate specification is described in some depth with frequent examples from various organisms. Post-embryonic development is illustrated using flower development. Cell and tissue differentiation is described using anther and carpel development as examples.


BIOL0070: Plant biotechnology & the environment

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To define 'Plant Biotechnology' and describe the categories included within the definition and their applications. By the end of this course the student should have gained:
*a general understanding of the various categories of plant biotechnology
*an understanding of the direct and indirect effects of plant biotechnology on the environment in terms of socio-economic costs and benefits
*an appreciation of policy and institutional issues related to the exploitation of plant biotechnology by both the public and private sectors in a democratic society.
Content:
The definition of Plant Biotechnology, the categories included within the definition and their applications. The link: population + consumption level + (bio) technology = environmental impact. World, regional and national trend s in population size and food consumption levels and their implications for agricultural and natural ecosystems. The contribution of plant biotechnology to agricultural systems and their environmental implications. Ex situ and in situ biod iversity conservation strategies and the impact of biotechnology. Risk analysis and the release of genetically manipulated organisms into the environment. Public and private sector research, ownership of biological resources and intellectual property ri ghts. Control of biotechnology R & D and implementation: priority setting; public participation; policies and institutions; developed and developing countries. The Cassava Biotechnology Network as an example of control and implementation of plant biote chnology.


BIOL0071: Topics in environmental plant virology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0034

Aims & learning objectives:
Aims: To explore the relationship between viruses, plants (including fungi) and people through the appreciation of plant viruses as pathogenic entities that move and survive, at the molecul ar level, within cellular environments, and at the whole plant level, within and between natural and crop environments After taking this course the student should be able to:
*understand the biology of plant viruses and their impact on plants and people.
Content:
The nature of plant viruses. Viruses within the cellular environment; virus movement and distribution in planta; viruses in seed and pollen; secondary compounds in virus-infected plants; antiviral compounds; viruses and dsR NA in fungi; viruses within crop and natural environments: symptom expression; emerging crop virus disease problems (especially in developing countries); virus vector transmission mechanisms, especially nematodes, aphids and fungi; the origins and epidemi ology of plant viruses; viruses as pathogens of fungi


BIOL0072: Biology as a world view

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites:

Aims & learning objectives:
Aims: To develop an understanding of the history of biological thought in western culture. To develop an understanding of the extent to which the biological world view reflects and shapes the broader western world view. To provide an introduction to debates conducted within the philosophy of science about the potential of science to obtain an accurate picture of reality; this debate is illustrated with a case study which looks at philosophic al and biological issues of the mind-brain problem. After taking this course the student should be able to:
*discuss the development of biological thought in ancient Greece, in medieval Europe and between the onset of the Scientific Revolution and the present
*debate problems associated with scientific methodology and discuss the implications for the biological world view of these problems.
Content:
Views of nature in ancient Greece, from presocratic philosophers to Plato, Aristotle and the neoplatonists, and in Europe from the medieval period to the present. Topics include: the nature of reality; what exists and why; the rel ationship between individuals, universals and classification. A critique of science which will include the following issues: how science is possible; how science identifies areas for study; the scientific approach, including the role of inductive and ded uctive reasoning, theory-ladeness and theory choice.


BIOL0073: The evolution of genetic systems

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX70 CW30

Requisites: Pre BIOL0040, Pre BIOL0039 (recommended but not essential)

Pre: A level Mathematics
Aims & learning objectives:
Aims: To provide an introduction to mathematical population genetics and its application as regards understanding problems related to the organisation and structure of genetic systems. After taking this course the student should be able to:
*demonstrate competence in the analysis of simple recursion equations as applied to one locus problems
*understand the operation of two locus recursion equations with application to modifier analysis
*understand the methods for testing evolutionary hypotheses
*understand basic concepts within evolutionary genetic and molecular evolution.
Content:
The first four lectures provide an introduction to the mathematics of gene frequency change.This provides the basis for asking the following questions:1) Why do organisms have sex? 2) What determines the mutation rate? and 3) Why b e diploid? After this the notion of selfish elements is introduced and their relevance to understanding the number of sexes and to genome structure is examined. Use of molecular evolutionary data comparative analysis and experimental tests of hypotheses are discussed.


BIOL0074: The evolution of social behaviour

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX80 ES20

Requisites: Pre BIOL0040

Aims & learning objectives:
Aims: To develop an understanding of (a) key conceptual issues in the evolution of social behaviour; (b) why sociobiological issues, such as the nature nurture debate, have been, and will cont inue to be, controversial and (c) the ways in which evolutionary theories can be tested by experimentation. To develop skills in first: recognising and selecting key studies from the primary literature, and second, presenting a case study in the form of a short seminar, complete with summary sheets, in such a way as to highlight how key ideas have been tested and refined empirically. After taking this course the student should be able to:
*demonstrate an understanding both of the theories of social evolution and how such theories are tested and refined by observations and experiments
*discuss and synthesise results from a number of carefully selected case studies in such a way as to critically evaluate the pros and cons of different theories and to form some judgement about their validity
*present a clear concise and well focused short seminar on new topics drawn from the primary literature.
Content:
This course debates the hottest topics in the evolution of social behaviour in animals including Homo sapiens. These topics include kin selection, inclusive fitness theory, sexual selection, kin recognition, altruism, genet ic determinism, the evolution of co-operation and conflict, selfishness and spite and human sociobiology. This is a course based largely on seminars presented by students on the basis of their reading of primary publications, reviews and text book exampl es.


BIOL0075: Professional training placement

Academic Year

Credits: 60

Contact:

Topic:

Level: Level 3

Assessment: OT100

Requisites:

Pre A good record of achievement at level 1 and 2 Aims & learning objectives:
Aims:
* to provide experience of the application of biological science
* to promote understanding of the principles and practices of working in a professional environment. After taking this course the student should be able to:
* undertake and report on a piece of work in an agreed programme
* integrate into a commercial or academic environment
Content:
Laboratory or other professional experience which is deemed suitable by the Director of Studies (Placements).


BIOL0076: Research project (MBiochem)

Semester 1

Credits: 18

Contact:

Topic:

Level: Undergraduate Masters

Assessment: OT100

Requisites: Pre BIOL0053

Aims & learning objectives:
Aims: To develop skills in planning and undertaking a scientific investigation in biochemistry at the level of advanced research. After taking this course the students should be able to
*undertake research at the advanced level, interpret the results and report the outcome.
Content:
All stages are undertaken under the guidance of an academic supervisor. The planning stage involves defining the problem and devising an appropriate strategy to investigate it within constraints of time and resources. Risk assess ment. Investigation stage involves the acquisition of (usually) quantitative data. Experimental design. Carrying out quantitative techniques, evaluating sources of error. The analysis and interpretation stage involves the use of appropriate statistica l techniques and the evaluation of results in relation to published work. The final phase is to communicate the outcome of the project in the form of a written report.


BIOL0076: Research project (MBiochem)

Semester 2

Credits: 18

Contact:

Topic:

Level: Undergraduate Masters

Assessment: OT100

Requisites: Pre BIOL0053

Aims & learning objectives:
Aims: To develop skills in planning and undertaking a scientific investigation in biochemistry at the level of advanced research. After taking this course the students should be able to
*undertake research at the advanced level, interpret the results and report the outcome.
Content:
All stages are undertaken under the guidance of an academic supervisor. The planning stage involves defining the problem and devising an appropriate strategy to investigate it within constraints of time and resources. Risk assess ment. Investigation stage involves the acquisition of (usually) quantitative data. Experimental design. Carrying out quantitative techniques, evaluating sources of error. The analysis and interpretation stage involves the use of appropriate statistica l techniques and the evaluation of results in relation to published work. The final phase is to communicate the outcome of the project in the form of a written report.


BIOL0077: Molecular evolution

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites: Pre BIOL0018, Pre BIOL0020, Pre BIOL0055

Aims & learning objectives:
Aims: To draw on the wealth of biochemical and molecular biological information that the students have accumulated over the previous years of their course. The revolution in molecular biolo gy has created an extensive database of sequences and correlations between protein structure and function; to appreciate and analyse this, it is essential to understand the principles of molecular evolution. This course aims to provide that understandin g. After taking this course the student should be able to:
* understand the current theories of molecular evolution
* appreciate that changes occur to the genotype, but selection is of the phenotype
* interpret evolutionary changes in protein structure with respect to changes in function
* apply what we learn from the evolution of proteins to the engineering of enzymes
* understand the way in which phylogenetic trees are constructed
* evaluate critically current theories of cellular evolution
Content:
Topics: Evolution - what is it and why study it? Chemical evolution and the origin of life. The RNA world. Genome evolution. Evolution of proteins: gene duplication, mutation and divergence, adaptation and selection. Construc tion of phylogenetic trees. Current concepts of cellular evolution.


BIOL0078: Biotechnology

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites: Pre BIOL0006, Pre BIOL0007, Pre BIOL0018

Aims & learning objectives:
Aims: To provide an understanding of the principles and practice of advanced Biotechnology as described by industrial speakers. After taking this course the students should be able to:
*give an account of how Biochemistry relates to Biotechnology in animal cell culture
*describe the commercial use of extremophiles
*understand therapeutic use of biopharmaceuticals
*describe approaches to vaccine development
*account for the world wide implications of Biotechnology.
Content:
Animal cell culture, extremophiles, biopharmaceutical production, vaccine development, clinical diagnostics, biosensors, viral products, computer aided drug design.


BIOL0079: Clinical biochemistry

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites: Pre BIOL0006, Pre BIOL0007, Pre BIOL0018

Aims & learning objectives:
Aims: To provide an understanding of the principles of biochemistry as applied to medicine as described by invited clinical speakers. After taking this course the students should be able to:
*understand the molecular biology and appreciate the medical significance of various congenital and other defects in humans
*give an account of the biochemical aspects of cystic fibrosis; abnormalities of postabsorbtive blood sugar, glycogen storage diseases, plasma lipids.
Content:
Topics: ion channels, metabolism of carbohydrates, lipids, and proteins.


BIOL0081: Biochemical ethics

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0003, Pre BIOL0004, Pre BIOL0007, Pre BIOL0023

Aims & learning objectives:
Aims: To provide an understanding of the ethical issues that arise from advances in the life sciences. After taking this course the student should be able to:
*give quantitative interpretation of advanced techniques which are ethical concern
*provide balanced argument for a particular ethical stance.
Content:
Biochemical heretics, AIDS controversy, rights to genetic knowledge; embryo research, artificial chromosomes, gene therapy, genetic counselling scientific misconduct, cell transplants.


BIOL0082: Neurochemistry

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW 100

Requisites: Pre BIOL0028

or Pre BIOL0099 Aims & learning objectives:
Aims: To acquire knowledge of neurological and psychiatric diseases, with reference to underlying neurochemical dysfunctions and potential therapies After taking this course the student should be able to:
*demonstrate an insight into current topics and controversies in the neurosciences,
*show development of presentation and discussion skills.
Content:
Topics selected from: CLINICAL NEUROSCIENCE
* Alzheimer's disease
* Parkinson's disease
* Huntingdon's chorea
* Epilepsy
* Multiple sclerosis
* Jacob Creutzfelt
* Stroke
* HIV dementia
* Depression
* Schizophrenia
* Anxiety / Panic
* Muscular dystrophies


BIOL0083: Enzymes in biotechnology & medicine

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0003, Pre BIOL0004, Pre BIOL0018, Pre BIOL0048

Aims & learning objectives:
Aims: To use our current knowledge of enzymes to explore their applications in biotechnology and medicine. After taking this course the student should be able to:
* appreciate the wide potential applications of enzymes with respect to their properties
* understand how enzymes can be engineered to meet the needs of biotechnology and medicine
* know a wide range of examples of biotechnological and medical uses
* appreciate the economic factors involved in the use of enzymes
* appreciate the impact of genome sequencing on enzymes and their applications
Content:
Enzyme engineering; electro-enzymology and biosensors; enzyme chaperones; enzymes in organic solvents; pepzymes; clinical enzymology; enzyme therapy; enzymes as target for drugs; catalytic antibodies; extremozymes; genomics and pro teomics.


BIOL0084: Cellular biochemistry

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0045

Pre BIOL0028 or Pre BIOL0099 Aims & learning objectives:
Aims: To encourage students to think critically about the current state of knowledge of biochemical processes within cells. Current literature is studied in detail with a view to understanding the molecular basis of cell regulatory processes. The cellular basis for disease states including Diabetes and Cancer are discussed with a view to evaluating the key steps in research required for further progress in these areas. After taking this course students should be able to:
*prepare and present a 40 minute seminar on an advancing area of cell biology and present their own views as to where progress is being made
*critically assess recent scientific literature and be able to comment on areas of the literature where there are controversial or contrasting views.
*prepare a research proposal which identifies a research problem in cell biology and describes a series of experiments which seek to solve the problem.
Content:
Signalling molecules, signalling proteins, cell structure and organisation, cell compartmentalisation and membrane protein trafficking. The cellular basis of disease.


BIOL0085: Medical biochemistry

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0004, Ex BIOL0102

Aims & learning objectives:
Aims: To generate an understanding of the extent to which Biochemical knowledge influences current clinical practice and therapeutic approaches. After taking the course, the student should be able to:
*appreciate the increasing contribution of biochemical science to drug design and to the day to day activities in both hospital and general clinical practice
*have a knowledge of the areas of biochemical research that are most relevant to clinical medicine.
Content:
A series of lectures/discussions will be led by invited clinicians from Regional Hospitals in the Bath and Bristol area. The specialists will discuss their clinical and related research areas and stress the extent of the foundatio n of their work on basic science. In a second aspect of the Option, students will prepare and present a 30 min talk on a particular area of clinical biochemistry, chosen, in general, from a list provided by the Option organiser. The talks will be follo wed by general discussion. Contributions of students to both their own talk and discussion of others will be assessed.


BIOL0086: Molecular immunology

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0046

Aims & learning objectives:
Aims: To describe the principles of particular aspects of Molecular immunology. After taking this course the student should be able to:
*give qualitative interpretation and description of the human immune systems
*show how this system breaks down to give various disease states
*show how the immune system can be used in therapy.
Content:
Antigen processing and presentation, Tcell receptors and receptor complexes, cell adhesion, self tolerance, allergic reactions, autoimmunity, antibody engineering, therapeutic antibodies, catalytic antibodies, cancer vaccines.


BIOL0087: Vaccines

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites:

Aims & learning objectives:
Aims: To describe how recent advances in knowledge about the viral and microbial factors required for virulence and the immune response to infection are now leading to the development of new vaccines based on rational design. After taking this course the student should be able to:
* understand pathogenic mechanisms and role of action of whole cell, whole virus and purified subunit vaccines in protecting against various human diseases
* appreciate how recent advances in molecular biology, protein and peptide purification and immunology might lead in the next century to new vaccines of well-defined specificities and low toxicity based on rational design.
Content:
Historical vaccines and eradication of smallpox and polio; diphtheria, tetanus and cholera vaccines; subunit vaccines against pertussis and meningococcal disease; malarial vaccines; possibilities synthetic peptides, chimeric antige ns, vaccinia virus recombinants and anti-iodiotype antibodies as novel vaccines; mode of action and different types of adjuvants i.e. depots, emulsions, cell-wall components and liposomes. Specialised seminars presented by invited speakers and participat ing students.


BIOL0088: Bioinformatics

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW 100

Requisites: Pre BIOL0046

Aims & learning objectives:
Aims: To understand the concept of Bioinformatics; to become familiar with the tools of Bioinformatics; to recognise the ways in which Bioinformatics can be used to develop new drugs. After taking this course the student should be able to:
* understand the basis of sequence alignment and structure prediction methods
* know how the tools of Bioinformatics are used in the identification of new protein functions
* be familiar with some "hands-on" sequence analysis
Content:
Despite the title, the option in Bioinformatics is not about computing. The series of topics will cover the present methods being used to understand the mass of sequence data from the human and other genome projects. It will cove r pattern recognition in DNA sequences and how to derive function from sequence, methods of sequence alignment of protein sequences, prediction of structure from sequence, structural comparison and a discussion of how structure and biological function are related. Particular attention will be paid to the topic of therapeutic target discovery


BIOL0091: Data interpretation in molecular & cell biology

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites:

Aims & learning objectives:
Aims: To provide experience of the interpretation of molecular and cellular biological data. After taking this course the student should be able to:
*understand and interpret information on biological phenomena, using quantitative (numerical) and qualitative (text or image) sources
*make logical statements and reach sound conclusions from biological data
*be aware of the limits of interpretation and be capable of selecting suitable statistical tests
* interpret the outcome of a statistical test on biological data.
Content:
The course comprises a series of assignments and problems which are undertaken by the students and then analysed and discussed in weekly workshops. Using examples which illustrate different types of molecular and cellular biologica l information, the course covers the interpretation of gels and autoradiographs as well as simple data sets, data transformation, graphical presentation, interpretation of trends. As far as possible, the examples are drawn from molecular and cellular bi ology.


BIOL0093: Practical microbial genetics

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: OR70 PR30

Requisites: Pre BIOL0007

Aims & learning objectives:
Aims: To provide practical experience of the use of advanced microbial genetics techniques. After taking this course the student should be able to:
*organise working in a pair on two mini-projects
*plan their own time schedule
*make their own materials in advance for the growth and selection of cells
*convert written protocols into practically designed experiments
*perform good aseptic technique
*make comprehensive and accurate records of their work
*critically evaluate their own microbial genetics data
*understand the theoretical basis of the experiments they have performed
*interpret their results in relation to expected outcomes.
Content:
Interrupted mating experiment in Escherichia coli; bacterial conjugation and transposition; resistance factor plasmid transfer; transduction with bacteriophage lambda; genetics of lactose operon; Luria and Delbruck fluctuati on experiment with yeast mutants; gene expression following mating in E. coli.


BIOL0095: Integrated biochemistry

Semester 1

Credits: 6

Contact:

Topic:

Level: Undergraduate Masters

Assessment: EX75 OT25

Requisites: Pre BIOL0016, Pre BIOL0075

Aims & learning objectives:
Aims: To enable students to use information from their courses, their placements and their attendance at departmental seminars to give themselves a competent overview of the subject of bioche mistry. To gain expertise in expression of biochemistry research through poster presentation. After taking this course the student should be able to:
*demonstrate the communication of a research (placement) experience through a poster presentation
*in an examination at the end of the course, write two essays of a global nature that will illustrate the comprehension of biochemistry as an integrated subject.
Content:
See above


BIOL0095: Integrated biochemistry

Semester 2

Credits: 6

Contact:

Topic:

Level: Undergraduate Masters

Assessment: EX75 OT25

Requisites: Pre BIOL0016, Pre BIOL0075

Aims & learning objectives:
Aims: To enable students to use information from their courses, their placements and their attendance at departmental seminars to give themselves a competent overview of the subject of bioche mistry. To gain expertise in expression of biochemistry research through poster presentation. After taking this course the student should be able to:
*demonstrate the communication of a research (placement) experience through a poster presentation
*in an examination at the end of the course, write two essays of a global nature that will illustrate the comprehension of biochemistry as an integrated subject.
Content:
See above


BIOL0096: Biochemical problems [for MBiochemistry students]

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: OT100

Requisites: Pre BIOL0018, Ex BIOL0015

Aims & learning objectives:
Please see the catalogue entry for BIOL0015.
Content:
Please see the catalogue entry for BIOL0015. This unit covers the content of BIOL0015 for the first few weeks of semester 2 before students leave to take up their placement.


BIOL0097: Protein purification [For MBiochemistry students]

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: OT100

Requisites: Pre BIOL0020, Ex BIOL0021

Aims & learning objectives:
Please see the catalogue entry for BIOL0021.
Content:
Please see the catalogue entry for BIOL0021. This unit covers the content of BIOL0021 for the first few weeks of semester 2 before students leave to take up their placement.


BIOL0098: Practical biochemistry [For MBiochemistry students]

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: OT100

Requisites: Ex BIOL0022

Aims & learning objectives:
Please see the catalogue entry for BIOL0022.
Content:
Please see the catalogue entry for BIOL0022. This unit covers the content of BIOL0022 for the first few weeks of semester 2 before students leave to take up their placement.


BIOL0099: Cellular neurobiology [For MBiochemistry students]

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: OT100

Requisites: Ex BIOL0028

Aims & learning objectives:
Please see the catalogue entry for BIOL0028.
Content:
Please see the catalogue entry for BIOL0028. This unit covers the content of BIOL0028 for the first few weeks of semester 2 before students leave to take up their placement.


BIOL0100: Genes & development practicals [for MBiochemistry students]

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: OT100

Requisites: Pre BIOL0035, Ex BIOL0036

Aims & learning objectives:
Please see the catalogue entry for BIOL0036.
Content:
Please see the catalogue entry for BIOL0036. This unit covers the content of BIOL0036 for the first few weeks of semester 2 before students leave to take up their placement.


BIOL0101: Neurobiology - development

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites: Pre BIOL0028, Pre BIOL0099

Aims and Learning Objectives: Aims: To provide a detailed understanding of selected examples of the origins of neural tissues and the mechanisms that control their development. After taking this course the student should be able to:
*outline the processes involved in generating a nervous system
*explain current models of the mechanisms of neural plate specification and patterning
Content:
Neural development, including neuronal specification, survival and proliferation, and axon guidance to target tissues


BIOL0102: Molecular mechanisms of disease

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW 100

Requisites: Pre BIOL0003, Pre BIOL0024, Ex BIOL0085

Aims & learning objectives:
Aims: To describe how a defect at the level of the gene results in an observed disease phenotype. To show how such patients can be treated with modern molecular medicine. After taking this course the student should be able to:
* understand the common themes of genetic disorders, and how they relate to the overall phenotype
* understand the principles of tools involved in diagnosis and treatment of the disorders.
Content:
Diseases: diabetes, glycogen storage diseases, hyperbilirubinaemia, familial hypercholesterolaemia, fibroblast growth factor receptors and skeletal dysplasia.Diagnosis and treatment: PCR/cloning, antibody engineering, gene therap y, gene targeting in the mouse, mouse models for human disease.


BIOL0103: Molecular biology of animal adaptation

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW100

Requisites: Pre BIOL0006

Aims & learning objectives:
Aims: To demonstrate to students how novel molecular tools can be used to address questions central to natural selection theory After taking this course the student should be able to:
*describe central examples of natural selection such as pesticide resistance, mimicry and current examples from the growing field of evolution/development, and have examined the impact of molecular biology on these examples
Content:
Possible topics include: how do genotypes produce phenotypes; pesticide resistance, sex determination, colour pattern formation and mimicry, population genetics, neutral theory


BIOL0104: Molecular neuroscience

Semester 1

Credits: 3

Contact:

Topic:

Level: Level 3

Assessment: EX100

Requisites:

Pre BIOL0028 or BIOL0099, Pre BIOL0003 Aims & learning objectives:
Aims: An advanced review of the molecular and molecular processes underlying intercellular communication in the mammalian nervous system. After taking this course the student should be able to:
* understand the properties of the various classes of receptors and ion channels present in the mammalian CNS, and how these molecules interact to co-ordinate neuronal activity.
* read and comprehend the relevant scientific literature.
Content:
Lectures. Receptors and ion channels - the existence of families and super-families. The structure of these various families of polypeptide. The functional consequences of this diversity and how it might be regulated at the gene a nd protein levels. How the signals produced by these channels are integrated. Synthesis, release and uptake of neurotransmitters


BIOL0105: Third year pre-placement course (MBiochem)

Semester 2

Credits: 15

Contact:

Topic:

Level: Level 3

Assessment: CW50 ES25 PR25

Requisites: Pre BIOL0016

Aims & learning objectives:
Aims: To provide preparation for the third year placement and final year work. After taking this course the student should be able to:
* be able to use current methods to understand sequence data from the human and other genome projects
* be able to communicate new findings in biochemistry and/or the nature of biochemical employment in writing. At least one of these presentations will be aimed at a lay audience.
* be able (alongside earlier practicals) to perform the full range of biochemical techniques used in the Department
* study a collection of biochemical observations, such as the results section of a publication or simply a series of related observations compiled specifically for the exercise, and assess their significance. Indications of this ability could be, e.g . answering particular questions or writing the discussion section of a paper. It is especially important that the student learns to draw only such conclusions as are fully justified by the data.
Content:
Workshops in bioinformatics. Preparation of presentation of scientific work. Laboratory sessions in advanced biochemistry. Problem classes.


BIOL0106: Plant-animal interactions

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW10 ES10 EX80

Requisites: Pre BIOL0009, Pre BIOL0014

Aims & learning objectives:
Aims: To explore by means of lectures, directed study and student-led seminars, the biochemical, physiological, toxicological, ecological and evolutionary interactions between plants and ani mals, leading to an understanding of how these relationships have contributed to the evolution of these groups and of present day biodiversity. After taking this course, the student should be able to:
* Display an appreciation of the richness of interactions between plants and herbivores at the biochemical, physiological, and toxicological levels.
* Describe the host-finding and food-selection mechanisms of a number of herbivores, relating these to the properties of the plants and the environments in which they are found.
* Describe a number of named examples of plant defensive mechanisms and herbivore strategies to overcome these.
* Understand the feeding behaviour of herbivores in terms of optimal foraging and optimal digestion/nutrition strategies.
* Relate the present status of plant-herbivore interactions to the existence of past evolutionary arms races.
* Discuss other kinds of plant-animal interactions, including mutualisms connected with pollination, seed dispersal, and the trophic relations between carnivorous plants and their prey.
* Display a critical appreciation of the experimental and field ecological methods used to study these phenomena.
Content:
Various examples of plant herbivore and other kinds of plant-animal interactions, taken from the scientific literature will be presented in introductory lectures, will form the subject of directed study by the class, and will be pr esented as topics in student led seminars. The course will focus very largely on angiosperm plants and insects, although examples of other groups will be used as appropriate.


CHEY0007: General chemistry

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX65 PR25 CW10

Requisites: Ex CHEY0001, Ex CHEY0004, Ex CHEY0009, Ex CHEY0010, Ex CHEY0011, Ex CHEY0012

This unit is not available to students on Chemistry programmes. Aims & learning objectives:
To provide a broad introduction to the principles governing chemical reactivity and to illustrate these with a range of examples. After studying the Unit, students should be able to:
* Analyse experimental data and classify reactions.
* Use thermodynamic principles to account for chemical reactivity
* Describe the determination of rates of chemical reactions
* Describe simple theories of bonding in compounds.
* Rationalise reaction and structural chemistry in terms of the bonding models
Content:
Introduction to thermodynamics and kinetics with a range of case-study examples to illustrate how the basic principles can be applied to real reactions. Chemical equilibria and coupled reactions. An introduction to atomic and mole cular structure and bonding in compounds and how this is used to explain trends in structure and reactivity across the Periodic Table.


CHEY0008: Introductory organic chemistry

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: EX65 PR25 CW10

Requisites: Ex CHEY0003, Ex CHEY0009, Ex CHEY0010, Ex CHEY0011, Ex CHEY0012

This unit is not available to students on Chemistry programmes. Aims & learning objectives:
To provide an introduction to the subject of organic chemistry as a basis for understanding molecular processes affecting other areas of sciences, with reference to the themes of structure and bonding, reactivity, me chanism and synthesis. After studying the Unit, students should be able to:
* Account for the mechanism by which simple organic reactions occur
* Name and draw diagrammatically a selected range of organic compounds and functional groups
* Describe methods for the interconversion of selected functional groups
* Solve straightforward problems involving the material covered
Content:
Structure and bonding: Lewis theory, formal charge; resonance; hybridization conformation, configuration, chirality. Reactivity: chemistry of functional groups including alkanes, alkenes, alkyl halides, alcohols, ethers, thiols, a ldehydes, ketones, carboxylic acids, esters, acyl halides, thioesters, amides, amines; aromatics. Mechanism: energy profiles, heterolyis, homolysis, acidity, basicity, nucleophilicity, electrophilicity, electrophilic addition, nucleophilic substitution, elimination; nucleophilic addition/elimination, electrophilic and nucleophilic aromatic substitutio n, kinetic vs. thermodynamic control


MATH0108: Statistics

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 2

Assessment: EX50 CW50

Requisites: Pre BIOL0001, Pre BIOL0002, Ex MATH0127

Aims & learning objectives:
To understand the principles of statistics as applied to Biological problems. After the course students should be able to: Give quantitative interpretation of Biological data.
Content:
Topics: Random variation, frequency distributions, graphical techniques, measures of average and variability. Discrete probability models - binomial, poisson. Continuous probability model - normal distribution. Poisson and normal approximations to binomial sampling theory. Estimation, confidence intervals. Chi-squared tests for goodness of fit and contingency tables. One sample and two sample tests. Paired comparisons. Confidence interval and tests for proportions. Least sq uares straight line. Prediction. Correlation


MATH0127: Statistics [For MBiochemistry students]

Semester 2

Credits: 3

Contact:

Topic:

Level: Level 2

Assessment: OT100

Requisites: Pre BIOL0001, Pre BIOL0002, Ex MATH0108

Aims & learning objectives:
Please see the catalogue entry for MATH0108.
Content:
Please see the catalogue entry for MATH0108. This unit covers the content of MATH0108 for the first few weeks of semester 2 before students leave to take up their placement.


PHAR0002: Physiology, pathology & pharmacology 1 (Human physiology)

Semester 1

Credits: 6

Contact:

Topic:

Level: Level 1

Assessment: OT100

Requisites:

Aims & learning objectives:
An outline of human physiology
Content:
Physiology of the major systems of the body and control, i.e. physiology of the cardiovascular, respiratory, and gastrointestinal and renal systems to understand how the major systems of the body are integrated and controlled. Students must have A-level Chemistry and another Science A-level, preferably Biology in order to undertake this unit.


PHAR0163: Recent advances in molecular signalling

Semester 2

Credits: 6

Contact:

Topic:

Level: Level 3

Assessment: CW20 ES20 EX60

Requisites: Pre PHAR0129

Aims and Learning Objectives: This unit will familiarise the student with recent advances in molecular signalling and current areas of research which are of particular interest and importance. Knowledge gained from previous units i n cell biology, and in particular molecular pharmacology, will be built upon with more advanced and specialised treatment of specific topics encompassing cellular signalling events in different model systems. The tutorials are integral to the unit, allowi ng for open discussion of pertinent current research papers. After taking this unit the student should have an in depth understanding of the complex interactions which occur in cellular signalling events. They should have developed the ability to read an d interpret original research papers in this area in a logical and critical manner and recognise the intricacies of cellular signalling mechanisms.
Content:
An in-depth treatment of selected topics covering recent advances in molecular signalling. The areas to be covered include signalling events occuring in immune cells in response to cytokines and other mediators; protein interaction modules; kinase cascades; tyrosine kinases; tyrosine phosphatases; lipid signalling; regulation of transcription.


PSYC0001: Psychology 1

Semester 1

Credits: 6

Contact:

Topic: Psychology

Level: Level 1

Assessment: ES100

Requisites:

Aims & learning objectives:
The aim of this course is to introduce students to basic concepts and current themes and debates within psychology.
Content:
Lectures will be broadly based on the question - 'WHO AM I'? In order to answer this question, we will consider: drives; hormones and the mind/body question; our animal history and the influence of genetics; learning and socialisa tion; personality; society and the individual; intelligence and creativity; family relationships; social groups and social interaction attitudes; values, cultural beliefs, gender and social identity; normality and deviance; language and communication. Th ese lectures will provide the student with a grounding in the major domains within psychology, thereby preparing them for a critical understanding of the discipline as a whole.


PSYC0002: Psychology 2

Semester 2

Credits: 6

Contact:

Topic: Psychology

Level: Level 1

Assessment: EX100

Requisites: Pre PSYC0001

Aims & learning objectives:
Psychology II builds upon psychology I both conceptually and in terms of course content. This course will focus more heavily, however, on issues in biological psychology, although prior conta ct with the biological sciences will not be required. The purpose of this course is to provide the student with a more critical understanding of the nature of psychology as a discipline and its relation to neighbouring sciences (i.e., biology & psychiatr y).
Content:
Lecture topics in this course will include; aggression and violence; altruism and helping; social skills; stress and emotions; fear, anxiety, depression, guilt and happiness; thinking and reasoning; social perceptions; prejudice an d attribution; competition and co-operation; the autonomic nervous system; brain specialisation; the eye and brain.


PSYC0008: Cognitive psychology

Semester 1

Credits: 6

Contact:

Topic: Psychology

Level: Level 2

Assessment: EX50 ES50

Requisites: Pre PSYC0001, Pre PSYC0002

Aims & learning objectives:
To equip the student with the basic principles of Cognitive Psychology, including theory, methodology and critiques. The student will be able to undertake more advanced courses relating to Co gnitive Psychology, for example on Artificial Intelligence. The student will also be able to appreciate the relationship of Cognitive Psychology to other fields of social and cognitive science.
*
Content:
How do we process information
* How do we organise information
* How do we store, and retrieve, information
* How do we solve problems We will consider three main approaches to research in this field; experimental methods: model-building based on case studies, and learning from brain damage.


PSYC0009: Social psychology

Semester 2

Credits: 6

Contact:

Topic: Psychology

Level: Level 2

Assessment: EX50 ES50

Requisites: Pre PSYC0001, Pre PSYC0002

Aims & learning objectives:
To equip students with an understanding of social interaction and social processes in dyads, group and communities.
Content:
This course focuses on the individual in interaction with others, in dyads, small groups and large groups. It examines the reciprocal relationship between the individual and their community, the röle of the individual as a gr oup member, decision-making processes in small and large groups, inter-group relations and crowd behaviour. We will also examine how our impressions of others are formed and what it is that distinguishes human sciences from all others.


PSYC0010: Clinical psychology

Semester 1

Credits: 6

Contact:

Topic: Psychology

Level: Level 2

Assessment: EX50 ES50

Requisites: Pre PSYC0001, Pre PSYC0002

Aims & learning objectives:
To introduce the work of clinical psychologists in the main areas of Adult Mental Health, Learning Disabilities and work with older adults. At the end of the course students should be able to set this work within the context of organisational change within the NHS and to contrast a psychological approach with other approaches, such as those of psychiatry. Students will also have more extensive knowledge of a specific psychotherapeutic techni que.
Content:
The basis of psychiatric diagnosis; introduction to counselling and psychotherapy; depression; loss and bereavement; anxiety; schizophrenia; learning disabilities; older adults; eating disorders; the context of work and evaluating interventions.