**Aims & Learning Objectives:**
**Aims: ** To introduce the concepts of logic that underlie all mathematical reasoning and the notions of set theory that provide a rigorous foundation for mathematics. A real life example of all this machinery at work will be given in the form of an introduction to the analysis of sequences of real numbers.
**Objectives: **
By the end of this course, the students will be able to: understand and work with a formal definition; determine whether straight-forward definitions of particular mappings etc. are correct; determine whether straight-forward operations are, or are not, commutative; read and understand fairly complicated statements expressing, with the use of quantifiers, convergence properties of sequences.
**Content: ** Logic: Definitions and Axioms. Predicates and relations. The meaning of the logical operators ∧, ∨,¬, →, ↔, ∀, ∃. Logical equivalence and logical consequence. Direct and indirect methods of proof. Proof by contradiction. Counter-examples. Analysis of statements using Semantic Tableaux. Definitions of proof and deduction.
Sets and Functions: Sets. Cardinality of finite sets. Countability and uncountability. Maxima and minima of finite sets, max (A) = - min (-A) etc. Unions, intersections, and/or statements and de Morgan's laws. Functions as rules, domain, co-domain, image. Injective (1-1), surjective (onto), bijective (1-1, onto) functions. Permutations as bijections. Functions and de Morgan's laws. Inverse functions and inverse images of sets. Relations and equivalence relations. Arithmetic mod p.
Sequences: Definition and numerous examples. Convergent sequences and their manipulation. Arithmetic of limits.
| |