- Student Records
Programme & Unit Catalogues

Department of Mathematical Sciences, Unit Catalogue 2011/12

MA50178: Numerical linear algebra

Click here for further information Credits: 6
Click here for further information Level: Masters UG & PG (FHEQ level 7)
Click here for further information Period: Semester 1
Click here for further information Assessment: CW 40%, EX 60%
Click here for further information Supplementary Assessment: Like-for-like reassessment (where allowed by programme regulations)
Click here for further information Requisites:
Click here for further information Description: Aims & Learning Objectives:
To teach an understanding of iterative methods for standard problems of linear algebra. Students should know a range of modern iterative methods for solving linear systems and for solving the algebraic eigenvalue problem. They should be able to anayse their algorithms and should have an understanding of relevant practical issues, for large scale problems. They should be able to demonstrate an in-depth understanding of the subject.

Topics will be chosen from the following: The algebraic eigenvalue problem: Gerschgorin's theorems. The power method and its extensions. Backward Error Analysis (Bauer-Fike). The (Givens) QR factorization and the QR method for symmetric tridiagonal matrices. (Statement of convergence only). The Lanczos Procedure for reduction of a real symmetric matrix to tridiagonal form. Orthogonality properties of Lanczos iterates. Iterative Methods for Linear Systems: Convergence of stationary iteration methods. Special cases of symmetric positive definite and diagonally dominant matrices. Variational principles for linear systems with real symmetric matrices. The conjugate gradient method. Krylov subspaces. Convergence. Connection with the Lanczos method. Iterative Methods for Nonlinear Systems: Newton's Method. Convergence in 1D. Statement of algorithm for systems.
Click here for further informationProgramme availability:

MA50178 is Optional on the following programmes:

Department of Mathematical Sciences
NB. Programmes and units are subject to change at any time, in accordance with normal University procedures.