- Student Records
Programme & Unit Catalogues


MA50182: Metric spaces

Follow this link for further information on academic years Academic Year: 2012/3
Follow this link for further information on owning departmentsOwning Department/School: Department of Mathematical Sciences
Follow this link for further information on credits Credits: 6
Follow this link for further information on unit levels Level: Masters UG & PG (FHEQ level 7)
Follow this link for further information on period slots Period: Semester 1
Follow this link for further information on unit assessment Assessment: CW 25%, EX 75%
Follow this link for further information on supplementary assessment Supplementary Assessment: MA50182 Mandatory extra work (where allowed by programme regulations)
Follow this link for further information on unit rules Requisites:
Follow this link for further information on unit content Description: Aims & Learning Objectives:
This course is intended to develop the theory of metric spaces and the topology of Rn for students with both "pure" and "applied" interests.
Objectives: To provide a framework for further studies in Analysis and Topology. Topics useful in applied areas such as the Contraction Mapping Principle will be emphasized. Students will know the fundamental results listed in the syllabus and have an instinct for their utility in analysis and numerical analysis. They should be able to demonstrate an in-depth understanding of the subject.

Content:
Definition and examples of metric spaces. Convergence of sequences. Continuous maps and isometries. Sequential definition of continuity. Subspaces and product spaces. Complete metric spaces and the Contraction Mapping Principle. Sequential compactness, Bolzano-Weierstrass theorem and applications. Open and closed sets (with emphasis on Rn). Closure and interior of sets. Topological approach to continuity and compactness (with statement of Heine-Borel theorem). Equivalence of Compactness and sequential compactness in metric spaces. Connectedness and path-connectedness. Metric spaces of functions: C[0,1] is a complete metric space.
Follow this link for further information on programme availabilityProgramme availability:

MA50182 is Optional on the following programmes:

Department of Mathematical Sciences
Notes:
* This unit catalogue is applicable for the 2012/13 academic year only. Students continuing their studies into 2013/14 and beyond should not assume that this unit will be available in future years in the format displayed here for 2012/13.
* Programmes and units are subject to change at any time, in accordance with normal University procedures.
* Availability of units will be subject to constraints such as staff availability, minimum and maximum group sizes, and timetabling factors as well as a student's ability to meet any pre-requisite rules.