
Academic Year:  2012/3 
Owning Department/School:  Department of Physics 
Credits:  6 
Level:  Honours (FHEQ level 6) 
Period: 
Semester 1 
Assessment:  CW 100% 
Supplementary Assessment:  Likeforlike reassessment (where allowed by programme regulations) 
Requisites:  Before taking this unit you must take PH20018. Students should have taken an appropriate selection of year 1 and year 2 physics units, including PH20018 in order to take this unit. 
Description:  Aims: The aims of this unit are to introduce students to the practical use of computer modelling as a complement to theoretical and experimental solution of physical problems, to introduce a contemporary package available to the modeller, and to explore topics in physics that lend themselves to computational modelling. Learning Outcomes: After taking this unit the student should be able to: * identify the strengths and weaknesses of a computational approach to modelling; * demonstrate a practical knowledge of the Maple computer algebra system; * construct Maple worksheets to analyse physical problems; * use computational modelling to perform indepth investigations into selected topics; * explain the methodology, relevant issues and output of the investigations performed. Skills: Written Communication T/F A, Numeracy T/F A, Data Acquisition, Handling, and Analysis T/F A, Information Technology T/F A, Problem Solving T/F A. Content: Introduction to computational modelling as a means of gaining physical insight: Contemporary applications of computer modelling. Computer algebra packages as a scientific computer environment: Problems solved effectively in this environment and those that are not. Practical introduction to Maple: Data structures; constants, variables, expressions, functions, lists, arrays, sets and strings. Basic calculus; integration, differentiation, limits, series, sums. Standard functions. Graphics; xy plots, parametric plots, 3d plots, plot objects, animation. Data i/o. Solving equations; symbolic, numerical, systems of equations, ordinary differential equations. Linear Algebra; vectors, matrices, addition, subtraction, multiplication, dot & cross products, determinant, trace, eigenvalues, eigenvectors. Programming; logic, loops, procedures. Exercises and projects based upon construction of Maple worksheets: Examples may include: Bound state problems in quantum physics by shooting method, basis set expansion. Coupled oscillators; normal modes, timeseries analysis. Planetary dynamics; orbit prediction, threebody problems, chaotic motion. Electrons in molecules and solids; linear combination of atomic orbitals, energy levels/bands, bonding/antibonding. Fractals; generation, characterisation via fractal dimension. Stochastic systems; random walkers, diffusion limited aggregation. Dynamics of nonlinear systems; logistic map, Lorentz equations, limit cycles, chaos. Percolation; cluster counting algorithms, percolation threshold. 
Programme availability: 
PH30055 is Compulsory on the following programmes:Department of Physics
PH30055 is Optional on the following programmes:Department of Physics
