- Student Records
Programme & Unit Catalogues

CE10079: Biology & bio-processes

Follow this link for further information on academic years Academic Year: 2015/6
Further information on owning departmentsOwning Department/School: Department of Chemical Engineering
Further information on credits Credits: 6
Further information on unit levels Level: Certificate (FHEQ level 4)
Further information on teaching periods Period: Semester 1
Further information on unit assessment Assessment Summary: EX 100%
Further information on unit assessment Assessment Detail:
  • Examination (EX 100%)
Further information on supplementary assessment Supplementary Assessment: Like-for-like reassessment (where allowed by programme regulations)
Further information on requisites Requisites:
Further information on descriptions Description: Aims:
The course assumes that the majority of students will have done some biology at GCSE but none at A-level. It is therefore an introduction to aspects of biology and fermentation that enable us to exploit micro- organism systems in order to develop useful products and processes (e.g. enzymes, alcohol, effluent treatment, pharmaceuticals and food stuffs).

Learning Outcomes:
After successfully completing this unit the student should:
* Have an understanding of the importance of biological systems in the modern process industries;
* Be aware of the different types and classifications of organisms which exist in the microbial kingdom;
*Understand the basic chemistry, structure and function of the main classes of biochemicals;
* Have a basic understanding of the role of DNA and genetics in regulating biological activity, and how DNA can be manipulated to produce "new" processes and products;
* Be aware of the major internal structures in microbial cells and their functions; understand that enzymes are responsible for the catalysis of biochemical reactions, and how these reactions are regulated;
* Have a basic knowledge of at least two commercial bio-processes.

This course is designed to provide a knowledge base and industrial awareness of bioprocesses, to act as a foundation for design and synthesis in subsequent courses. This knowledge is taught and assessed.


* Introduction to biochemical processes and the types of product that are currently produced on industrial scale.
* Classification of organisms within the microbial kingdom and the types of compound which they require for growth or which they can produce as products.
* Basic chemistry, structure and function of these biochemical compounds.
* The role of DNA and genetics in regulation of metabolic and microbial activity, and its significance in modern biotechnology.
* Basic structure of microbial cells, including intra-cellular structures and their biological function.
*The role of enzymes in regulation and catalysis of biochemical reactions.
* Introduction to metabolic pathways and the coupling of degradative and synthetic reactions.
* Case studies of selected commercial bioprocesses, e.g. sewage treatment, alcoholic beverage production, cheese production, antibiotic production, food processing etc.
Further information on programme availabilityProgramme availability:

CE10079 is Compulsory on the following programmes:

Department of Chemical Engineering
  • UECE-AFM01 : MEng(Hons) Biochemical Engineering (Year 1)
  • UECE-AKM01 : MEng(Hons) Biochemical Engineering with Year long work placement (Year 1)
  • UECE-AFB05 : BEng(Hons) Chemical Engineering (Year 1)
  • UECE-AKB05 : BEng(Hons) Chemical Engineering with Year long work placement (Year 1)
  • UECE-AFM05 : MEng(Hons) Chemical Engineering (Year 1)
  • UECE-AKM05 : MEng(Hons) Chemical Engineering with Year long work placement (Year 1)

* This unit catalogue is applicable for the 2015/16 academic year only. Students continuing their studies into 2016/17 and beyond should not assume that this unit will be available in future years in the format displayed here for 2015/16.
* Programmes and units are subject to change at any time, in accordance with normal University procedures.
* Availability of units will be subject to constraints such as staff availability, minimum and maximum group sizes, and timetabling factors as well as a student's ability to meet any pre-requisite rules.