Academic Year:  2018/9 
Owning Department/School:  Department of Mathematical Sciences 
Credits:  6 [equivalent to 12 CATS credits] 
Notional Study Hours:  120 
Level:  Masters UG & PG (FHEQ level 7) 
Period: 
 Semester 2

Assessment Summary:  EX 100% 
Assessment Detail:  
Supplementary Assessment: 
 Likeforlike reassessment (where allowed by programme regulations)

Requisites: 
Before taking this module you must take MA30237

Description:
 NB. This unit is only available in academic years starting in an even year.
Aims: To give a thorough treatment of the fundamental theory of Galois on solvability of polynomials and the subtle interplay between group theory and field theory that arises in this context.
Learning Outcomes: At the end of the course the students should be able to state and use the fundamental theorem of Galois Theory as well as the various applications given. The students should moreover be able to compute the Galois group of simple polynomials.
Content: Revision of rings, integral domains and fields. Field extensions. Algebraic closure. Splitting fields. Normal and separable field extensions. Galois groups. The Galois correspondence and the fundamental theorem of Galois Theory. Solvable groups and the theorem of Galois on solvability of polynomials. The fundamental theorem of algebra. Finite fields.

Programme availability: 
MA40037 is Optional on the following programmes:
Department of Computer Science
 USCMAFB20 : BSc(Hons) Computer Science and Mathematics (Year 3)
 USCMAAB20 : BSc(Hons) Computer Science and Mathematics with Study year abroad (Year 4)
 USCMAKB20 : BSc(Hons) Computer Science and Mathematics with Year long work placement (Year 4)
 USCMAFM14 : MComp(Hons) Computer Science and Mathematics (Year 3)
 USCMAFM14 : MComp(Hons) Computer Science and Mathematics (Year 4)
 USCMAAM14 : MComp(Hons) Computer Science and Mathematics with Study year abroad (Year 4)
 USCMAAM14 : MComp(Hons) Computer Science and Mathematics with Study year abroad (Year 5)
 USCMAKM14 : MComp(Hons) Computer Science and Mathematics with Year long work placement (Year 4)
 USCMAKM14 : MComp(Hons) Computer Science and Mathematics with Year long work placement (Year 5)
Department of Economics
 UHESAFB04 : BSc(Hons) Economics and Mathematics (Year 3)
 UHESAAB04 : BSc(Hons) Economics and Mathematics with Study year abroad (Year 4)
 UHESAKB04 : BSc(Hons) Economics and Mathematics with Year long work placement (Year 4)
 UHESACB04 : BSc(Hons) Economics and Mathematics with Combined Placement and Study Abroad (Year 4)
Department of Mathematical Sciences
 USMAAFB15 : BSc(Hons) Mathematical Sciences (Year 3)
 USMAAAB16 : BSc(Hons) Mathematical Sciences with Study year abroad (Year 4)
 USMAAKB16 : BSc(Hons) Mathematical Sciences with Year long work placement (Year 4)
 USMAAFB13 : BSc(Hons) Mathematics (Year 3)
 USMAAAB14 : BSc(Hons) Mathematics with Study year abroad (Year 4)
 USMAAKB14 : BSc(Hons) Mathematics with Year long work placement (Year 4)
 USMAAFB01 : BSc(Hons) Mathematics and Statistics (Year 3)
 USMAAAB02 : BSc(Hons) Mathematics and Statistics with Study year abroad (Year 4)
 USMAAKB02 : BSc(Hons) Mathematics and Statistics with Year long work placement (Year 4)
 USMAAFB05 : BSc(Hons) Statistics (Year 3)
 USMAAAB06 : BSc(Hons) Statistics with Study year abroad (Year 4)
 USMAAKB06 : BSc(Hons) Statistics with Year long work placement (Year 4)
 USMAAFM14 : MMath(Hons) Mathematics (Year 3)
 USMAAFM14 : MMath(Hons) Mathematics (Year 4)
 USMAAAM15 : MMath(Hons) Mathematics with Study year abroad (Year 4)
 USMAAKM15 : MMath(Hons) Mathematics with Year long work placement (Year 4)
 USMAAKM15 : MMath(Hons) Mathematics with Year long work placement (Year 5)
Department of Physics
 USXXAFM01 : MSci(Hons) Mathematics and Physics (Year 4)
 USXXAAM01 : MSci(Hons) Mathematics and Physics with Study year abroad (Year 5)
 USXXAKM01 : MSci(Hons) Mathematics and Physics with Year long work placement (Year 5)
