- Student Records
Programme & Unit Catalogues


EE30215: Power system fundamentals

Follow this link for further information on academic years Academic Year: 2019/0
Further information on owning departmentsOwning Department/School: Department of Electronic & Electrical Engineering
Further information on credits Credits: 6      [equivalent to 12 CATS credits]
Further information on notional study hours Notional Study Hours: 120
Further information on unit levels Level: Honours (FHEQ level 6)
Further information on teaching periods Period:
Semester 1
Further information on unit assessment Assessment Summary: EX 100%
Further information on unit assessment Assessment Detail:
  • Examination (EX 100%)
Further information on supplementary assessment Supplementary Assessment:
Like-for-like reassessment (where allowed by programme regulations)
Further information on requisites Requisites:
Further information on descriptions Description: Aims:
To provide a fundamental understanding of the, operation and analysis of a modern power system.

Learning Outcomes:
After successfully completing this unit students will be able to: describe the advantages of interconnected networks, describe and analyse transformers, explain the principles of switching, explain and analyse the operation of a generator and its control systems, predict the stability of a generator under varying system conditions, explain and apply methods of load flow analysis, perform balanced and unbalanced fault calculations and analyse and apply transmission line models.

Skills:
Application of the information, techniques and methods detailed in the unit material, to the proposal of, and the carrying through of, appropriate solutions to engineering problems in electrical power systems. Taught, facilitated and tested.

Content:
Power System Plant: transformers, switchgear; Generation: steady-state operation, simple power systems; Transient Operation of Generators: equal area criterion, electrical transient modes; Load Flow Analysis: Gauss Iterative method; Fault Calculations: symmetrical components, sequence networks, fault types, transformer networks.
Further information on programme availabilityProgramme availability:

EE30215 is Compulsory on the following programmes:

Department of Electronic & Electrical Engineering
  • TEEE-AFM01 : MSc Electrical Power Systems
  • UEEE-AFB12 : BEng(Hons) Electrical Power Engineering (Year 3)
  • UEEE-AKB12 : BEng(Hons) Electrical Power Engineering with Year long work placement (Year 4)
  • UEEE-AFM12 : MEng(Hons) Electrical Power Engineering (Year 3)
  • UEEE-AKM12 : MEng(Hons) Electrical Power Engineering with Year long work placement (Year 4)

EE30215 is Optional on the following programmes:

Department of Electronic & Electrical Engineering
  • UEEE-AFB01 : BEng(Hons) Electrical and Electronic Engineering (Year 3)
  • UEEE-AKB01 : BEng(Hons) Electrical and Electronic Engineering with Year long work placement (Year 4)
  • UEXX-AFB02 : BEng(Hons) Integrated Mechanical and Electrical Engineering (Year 3)
  • UEXX-AKB02 : BEng(Hons) Integrated Mechanical and Electrical Engineering with Year long work placement (Year 4)
  • UEEE-AFM01 : MEng(Hons) Electrical and Electronic Engineering (Year 3)
  • UEEE-AKM01 : MEng(Hons) Electrical and Electronic Engineering with Year long work placement (Year 4)
  • UEXX-AFM02 : MEng(Hons) Integrated Mechanical and Electrical Engineering (Year 3)
  • UEXX-AKM02 : MEng(Hons) Integrated Mechanical and Electrical Engineering with Year long work placement (Year 4)

Notes: