- Academic Registry
Programme & Unit Catalogues

EE20100: Integrated control system design

[Page last updated: 04 August 2021]

Academic Year: 2021/2
Owning Department/School: Department of Electronic & Electrical Engineering
Credits: 6 [equivalent to 12 CATS credits]
Notional Study Hours: 120
Level: Intermediate (FHEQ level 5)
Semester 2
Assessment Summary: CW 50%, EX 50%
Assessment Detail:
  • Race (CW 10%)
  • Report (CW 40%)
  • Examination (EX 50%)
Supplementary Assessment:
EE20100 - Reassessment Coursework (where allowed by programme regulations)
EE20100 - Reassessment Examination (where allowed by programme regulations)
Requisites: Before taking this module you must take EE10170 or equivalent.
Description: Aims:
To give students a basic understanding of a wide range of analogue control system design techniques. To introduce students to the design processes by taking a requirement through to a prototype device.
After completing this unit, students should be able to: write a design specification for a product; carry out a top-down systematic design; identify and specify interface requirements for sub-systems; design forward path and feedback path analogue control systems; design unity feedback controllers; demonstrate an appreciation of how assumptions about the system model can affect the effectiveness of the design solution.

Learning Outcomes:
On successful completion of this unit students will have demonstrated the ability to: model the dynamic behaviour of simple electromechanical systems using Laplace transforms; analyse and predict the steady-state and transient response of a number of analogue control schemes; use root-locus diagrams to estimate transient response, stability and controller robustness; select closed-loop-controller form and characteristics to meet a target specification.

Problem solving; systematic mathematical modelling and analysis, independent tutorial problem solving, working on experimental systems in lab groups, implementing and observing practical control systems. Taught, facilitated and tested.

Basic electromechanical system modelling, features of open-loop and closed-loop control, block diagram representation and manipulation, Laplace transform analysis and transfer function derivation, steady-state error, dynamic-response performance measurement, system-stability assessment, root-locus method.

Programme availability:

EE20100 is Compulsory on the following programmes:

Department of Electronic & Electrical Engineering
  • UEXX-AFB02 : BEng(Hons) Integrated Mechanical and Electrical Engineering (Year 2)
  • UEXX-AKB02 : BEng(Hons) Integrated Mechanical and Electrical Engineering with Year long work placement (Year 2)
  • UEXX-AFM02 : MEng(Hons) Integrated Mechanical and Electrical Engineering (Year 2)
  • UEXX-AKM02 : MEng(Hons) Integrated Mechanical and Electrical Engineering with Year long work placement (Year 2)
  • UEEE-AFM16 : MEng(Hons) Robotics Engineering (Year 2)
  • UEEE-AKM16 : MEng(Hons) Robotics Engineering with Year long work placement (Year 2)
  • UEEE-AFB16 : BEng(Hons) Robotics Engineering (Year 2)
  • UEEE-AKB16 : BEng(Hons) Robotics Engineering with Year long work placement (Year 2)


  • This unit catalogue is applicable for the 2021/22 academic year only. Students continuing their studies into 2022/23 and beyond should not assume that this unit will be available in future years in the format displayed here for 2021/22.
  • Programmes and units are subject to change in accordance with normal University procedures.
  • Availability of units will be subject to constraints such as staff availability, minimum and maximum group sizes, and timetabling factors as well as a student's ability to meet any pre-requisite rules.
  • Find out more about these and other important University terms and conditions here.