MA30237: Group theory
[Page last updated: 03 August 2022]
Academic Year:  2022/23 
Owning Department/School:  Department of Mathematical Sciences 
Credits:  6 [equivalent to 12 CATS credits] 
Notional Study Hours:  120 
Level:  Honours (FHEQ level 6) 
Period: 
 Semester 1

Assessment Summary:  EX 100% 
Assessment Detail:  
Supplementary Assessment: 
 Likeforlike reassessment (where allowed by programme regulations)

Requisites: 
Before taking this module you must take MA20217

Learning Outcomes:
 After taking this unit, the students should be able to demonstrate knowledge and understanding of the basic theory of groups covered in the course. They should be able to work with the various constructions and tools developed like quotient groups, groups actions and Sylow Theory.

Aims:  To provide the students with a solid introduction to group theory and a broad range of examples of finite and infinite groups.

Skills:  Numeracy T/F A
Problem Solving T/F A
Written and Spoken Communication F (in tutorials).

Content:  Normal subgroups, congruences and quotient groups. Homomorphisms, isomorphisms and the Isomorphisms Theorems. Simple groups. Permutation groups and the simplicity of the alternating groups. Group actions and the Orbit Stabilizer Theorem. Conjugacy classes (including in Sn). Sylow Theory. The structure of abelian groups. Solvable groups.

Programme availability: 
MA30237 is Optional on the following programmes:
Department of Computer Science
 USCMAFB20 : BSc(Hons) Computer Science and Mathematics (Year 3)
 USCMAAB20 : BSc(Hons) Computer Science and Mathematics with Study year abroad (Year 4)
 USCMAKB20 : BSc(Hons) Computer Science and Mathematics with Year long work placement (Year 4)
 USCMAFM14 : MComp(Hons) Computer Science and Mathematics (Year 3)
 USCMAAM14 : MComp(Hons) Computer Science and Mathematics with Study year abroad (Year 3)
 USCMAKM14 : MComp(Hons) Computer Science and Mathematics with Year long work placement (Year 3)
Department of Economics
 UHESAFB04 : BSc(Hons) Economics and Mathematics (Year 3)
 UHESAAB04 : BSc(Hons) Economics and Mathematics with Study year abroad (Year 4)
 UHESAKB04 : BSc(Hons) Economics and Mathematics with Year long work placement (Year 4)
 UHESACB04 : BSc(Hons) Economics and Mathematics with Combined Placement and Study Abroad (Year 4)
Department of Mathematical Sciences
 USMAAFB15 : BSc(Hons) Mathematical Sciences (Year 3)
 USMAAAB16 : BSc(Hons) Mathematical Sciences with Study year abroad (Year 4)
 USMAAKB16 : BSc(Hons) Mathematical Sciences with Year long work placement (Year 4)
 USMAAFB13 : BSc(Hons) Mathematics (Year 3)
 USMAAAB14 : BSc(Hons) Mathematics with Study year abroad (Year 4)
 USMAAKB14 : BSc(Hons) Mathematics with Year long work placement (Year 4)
 USMAAFB01 : BSc(Hons) Mathematics and Statistics (Year 3)
 USMAAAB02 : BSc(Hons) Mathematics and Statistics with Study year abroad (Year 4)
 USMAAKB02 : BSc(Hons) Mathematics and Statistics with Year long work placement (Year 4)
 USMAAFB05 : BSc(Hons) Statistics (Year 3)
 USMAAAB06 : BSc(Hons) Statistics with Study year abroad (Year 4)
 USMAAKB06 : BSc(Hons) Statistics with Year long work placement (Year 4)
 USMAAFM14 : MMath(Hons) Mathematics (Year 3)
 USMAAFM14 : MMath(Hons) Mathematics (Year 4)
 USMAAAM15 : MMath(Hons) Mathematics with Study year abroad (Year 4)
 USMAAKM15 : MMath(Hons) Mathematics with Year long work placement (Year 4)
 USMAAKM15 : MMath(Hons) Mathematics with Year long work placement (Year 5)
Department of Physics
 USXXAFM01 : MSci(Hons) Mathematics and Physics (Year 4)
 USXXAAM01 : MSci(Hons) Mathematics and Physics with Study year abroad (Year 5)
 USXXAKM01 : MSci(Hons) Mathematics and Physics with Year long work placement (Year 5)

Notes:  This unit catalogue is applicable for the 2022/23 academic year only. Students continuing their studies into 2023/24 and beyond should not assume that this unit will be available in future years in the format displayed here for 2022/23.
 Programmes and units are subject to change in accordance with normal University procedures.
 Availability of units will be subject to constraints such as staff availability, minimum and maximum group sizes, and timetabling factors as well as a student's ability to meet any prerequisite rules.
 Find out more about these and other important University terms and conditions here.
