MA50085: Time series
[Page last updated: 23 October 2023]
Academic Year: | 2023/24 |
Owning Department/School: | Department of Mathematical Sciences |
Credits: | 6 [equivalent to 12 CATS credits] |
Notional Study Hours: | 120 |
Level: | Masters UG & PG (FHEQ level 7) |
Period: |
|
Assessment Summary: | CW 25%, EX 75% |
Assessment Detail: |
|
Supplementary Assessment: |
|
Requisites: | |
Learning Outcomes: |
At the end of the course, the student should be able to:
* compute and interpret a correlogram and a sample spectrum * derive the properties of ARIMA and state-space models * choose an appropriate ARIMA model for a given set of data and fit the model using R * compute forecasts for a variety of linear methods and models. * demonstrate critical thinking and a deep understanding of some aspects of time series theory and application. |
Aims: | To introduce a variety of statistical models for time series, cover the main methods for analysis and give practical experience in fitting such models. |
Skills: | Numeracy T/F A
Problem Solving T/F A Written and Spoken Communication F A |
Content: | Introduction: Examples, simple descriptive techniques, trend, seasonality, the correlogram.
Probability models for time series: Stationarity; moving average (MA), autoregressive (AR), ARMA and ARIMA models. Estimating the autocorrelation function and fitting ARIMA models. Forecasting: Exponential smoothing, Forecasting from ARIMA models. Stationary processes in the frequency domain: The spectral density function, the periodogram, spectral analysis. State-space models: Dynamic linear models and the Kalman filter. |
Course availability: |
MA50085 is Optional on the following courses:Department of Mathematical Sciences
|
Notes:
|