Skip to main content
University of Bath

Translational cell biophysics

Structure-function of proteins controlled by immune related lipid signalling events, affected by membrane morphology.

The main objective of this theme is to investigate the structure-function of various proteins involved in inflammation and immune cell activation pathways, particularly those controlled by lipid signalling events and how they are affected by membrane morphology. This will be in relation to localised intervention of small molecules and/or macromolecules with the aim of transforming the activation states of the proteins involved for application in pharmaceutics.

The implementation of membrane biophysics is essential to the functional targeting of therapeutics to subcellular compartments in models of immuno-oncology and immune pathology. The functional targeting is dependent on physical properties of the membranes to which proteins interact with/bind, such as membrane curvature and localised molecular order, which themselves are primarily determined by lipid composition. Thus, it is imperative to characterise these physical properties non-invasively in the living cells; this is where advances in the underlying physics/biophysics techniques will make a critical difference. The relationship between membrane structure alterations, via lipid synthesis pathways will be interrogated. High throughput image recognition, pathway analysis of global patterns resulting from the functional proteomics and lipidomics will be utilised in this research theme. It will also include the determination of structural activity-relationships of possible new medicines designed to target the sites of dysregulation in the signalling network of inflammation, oncology, and immune pathologies.

Theme Leader