I-SEE Seminar; Sustainable Manufacturing

Continuous Crystallisation – a Route to Sustainable Manufacturing in the Pharmaceuticals and Fine Chemicals Industries Chick Wilson, University of Bath

Context

BATH

The Importance of the Industry

- £60Bn chemical and pharmaceutical industry; UK's largest manufacturing exporter (CIA/ONS)
- The chemical and chemistry-using industries' growth strategy (IChemE): increase GVA by 50% from £195Bn to £300Bn
- Pharmaceutical manufacturing: exports of £24Bn, trade surplus of £4.9Bn (2012)

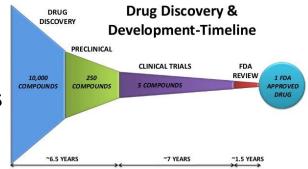
UK Pharmaceutical and Fine Chemicals Industry

Nature Reviews | Drug Discovery

Infrastructure, Drug Development Timescales

- Manufacturing Plants •
 - Large, substantial capital commitment
- **Drug Development Pipeline** •
 - Development time 12-15 years to market; up to \$1bn cost
 - ca. 1 in 10,000 drugs successfully translated to therapy
- \rightarrow Risk Aversion

BASF Ludwigshaven


Constraints

The Focus on Optimised Manufacturing

Drug Development Pipelines drying up wrt new compounds

- Disinvestment in core R&D for drug discovery and development
 - Focus on buying in new discovery products
- New materials at a premium
 - Particularly few blockbusters coming through
- Focus on extracting maximum value from existing portfolio
 - Better formulation (bioavailability);
 more effective manufacturing; smaller dosage

Continuous Crystallisation:

Towards sustainable manufacturing of pharmaceuticals

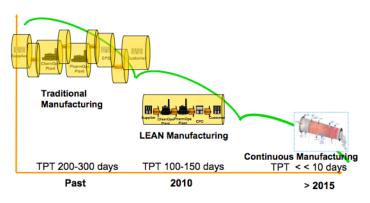
- Continuous crystallisation: Universal application >80% pharmaceutical products, >60% fine chemical products are made in crystalline form
- Focus on manufacturing optimisation for profit gives a real opportunity for developing sustainable, energy-efficient and environmentally-friendly approaches...

• ... Why, and How??

Continuous Manufacturing:

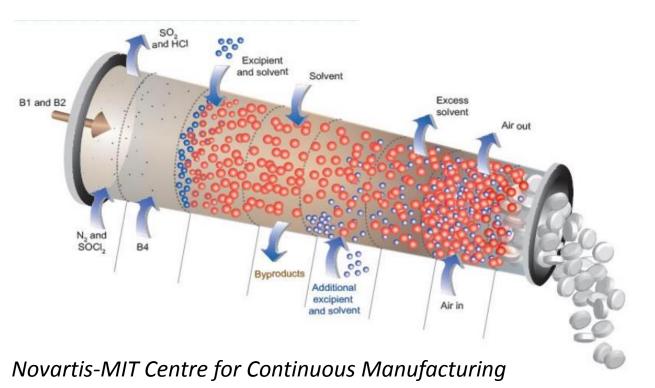
Evolution of Manufacturing Technology for Chemicals

2008


Not the White Heat of Technological Revolution

Continuous Manufacturing:

Sustainability, Energy and Environmental Benefits



- Sustainability; footprint reduction (40-90%, 25-60% capital)
- Lower running costs (25-60%); reduced & recoverable solvent, less energy
- Speed of scale-up of platform technologies
- Controllable quality
- Small batch, personalised medicine

Sustainable Manufacturing:

Integrated Pipeline for pharmaceutical manufacturing



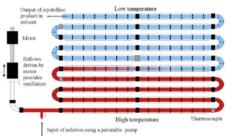
Sustainable Manufacturing:

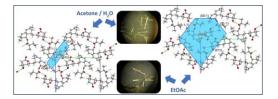
Integrated Pipeline for pharmaceutical manufacturing

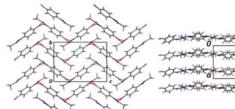
Continuous Manufacturing of Robust New Solid Particles Optimised for Exploitation in Products

Technical Challenges

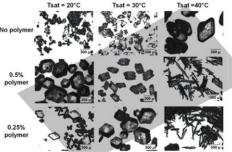
Platforms

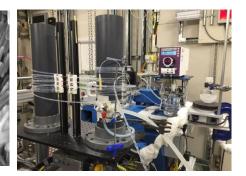

- atforms Development of platform continuous technologies
- Pre-competitive collaboration essential, and achievable
- rect compressioni, Best science, Engineering, Design, ۲ Manufacturing, Supply Chain capabilities
 Unified approach *wrt* regulators t manufacturing;
- inventory modelling; product-particle archetypes;


Products


- Ensuring equivalent of batch-to-batch reproducibility Pelivering QbD imperatives

Continuous Crystallisation for Manufacturing Research at Bath: From Platforms... to Products





CMAC and its Approach

EPSRC Future Manufacturing Hub

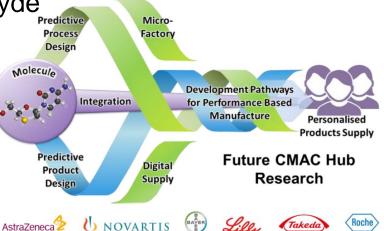
Multi-Disciplinary, Multi-institution

£50M Hub, 2016-2023;
 Director: Alastair Florence

UNIVERSITY OF

 Partners: Bath, Cambridge, Imperial, Leeds, Loughborough, Sheffield, Strathclyde

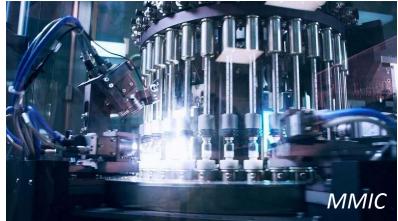
Imperial College


INIVERSITY OF LEI

ouahborouah

Academic-Industrial partnership

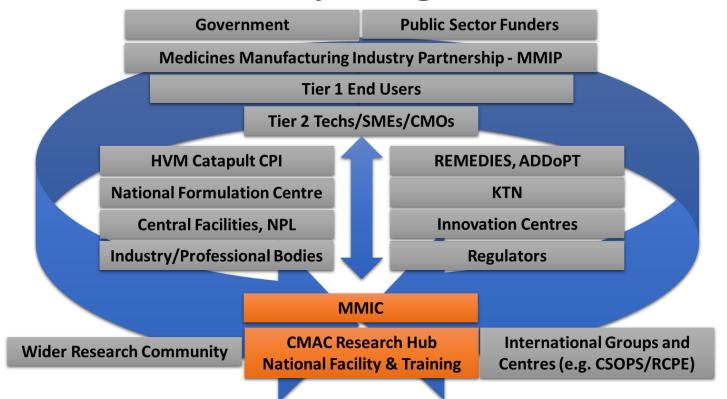
- Eight Tier-1: AstraZeneca, Bayer, GSK, Lilly, Novartis, Pfizer, Roche, Takeda
- Wide range of Tier-2 industrial members (users, suppliers, business)



Non-Technical Challenges

Economics, Policy, Regulatory barriers to adoption

- Traditional risk averse attitude; existing technologies well established, reliable, trusted – opposition at technical level
- Advance sustainability arguments
- Persuade CFO to replace
 \$Bn plant with continuous
- Create political and economic environment that is supportive for long-term manufacturing investment



 Partner with regulators (MHRA, EMA) to license new manufacturing paradigm (FDA had licensed just two CM processes by 2016, even with enlightened and engaged leadership)

The Landscape

Investment, Research, Policy & Regulation

The Future: Next Steps

- Scientists and Engineers: Deliver Compelling Solutions
- Industry: Continue Pre-Competitive Cooperation; Take the Risk to Invent in Continuous Plant
- Regulators: Agility and responsiveness
- Politicians: Consistent Regulatory framework, Environment for UK Manufacturing Industry

IFT 2017