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Abstract

With the increasing digitalization of buildings and
the adoption of comprehensive sensing and meter-
ing networks, the concept of building digital twins
is emerging as a key component in future smart and
energy-efficient buildings. Such digital twins enable
the use of flexible and adaptable data-driven models
to provide services such as automated performance
monitoring and model-based operational planning in
buildings. In this context, accurate indoor temper-
ature models are vital to ensure that the proposed
operational strategies are effective, feasible, and do
not compromise indoor comfort. In this work, the
significance of thermal space coupling for data-driven
indoor temperature forecasting is investigated by as-
sessing and comparing the performance of an isolated
and coupled Long Short-Term Memory model archi-
tecture across 70 spaces in a case study building. To
construct the coupled architecture, an open-source
tool is developed and presented, which allows the au-
tomated extraction of space topology from IFC-files
to identify adjacent spaces. The coupled architec-
ture is found to outperform the isolated architecture
for ∼84% of the investigated spaces, with significant
improvements under certain operational and climatic
conditions. To account for the subset of spaces where
the isolated architecture performs better, it is pro-
posed to select between the two architectures accord-
ingly. The demonstrated modularity and embedded
adaptability of the proposed model architectures pro-
vide a sound basis for implementation in a highly dy-
namic building Digital Twin environment.

Key Innovations

• A novel and generic tool for automatic extraction
of building topology from IFC files is presented
and applied

• A thermally coupled MISO architecture for mod-
ular data-driven indoor temperature modeling
and forecasting is presented and assessed

Practical Implications

The presented tool and architectures provides an au-
tomated, scalable, and accurate method for modeling
and forecasting indoor temperature, enabling decision
makers to evaluate how different operational strate-
gies affect the indoor comfort levels of a building.

Introduction

Energy consumption in buildings is necessary to sus-
tain proper air quality and adequate thermal com-
fort for occupants. However, the building sector is
currently one of the largest energy-consuming sec-
tors with major potential for improvements in en-
ergy efficiency and flexibility. With this as the driv-
ing force, buildings are currently seeing a fast-paced
digitalization in the pursuit of Internet of Things
(IoT)-integrated smart buildings (Jia et al. (2019)).
In this context, data-driven modeling methods have
received considerable attention for numerous appli-
cations, due to the promising potential for automa-
tion and scalability. The adaptability of data-driven
approaches has been demonstrated through various
applications, e.g. in forecasting of indoor air qual-
ity (Wei et al. (2019)), indoor temperature (Alawadi
et al. (2020)), building occupancy (Jin et al. (2021)),
energy loads (Amasyali and El-Gohary (2018)) as well
as for fault detection and diagnosis (FDD) (Mirnaghi
and Haghighat (2020)).

Indoor temperature is considered one of the key in-
dicators of indoor comfort and accurate prediction
models are therefore crucial for exploring different op-
erational strategies while maintaining proper indoor
comfort. Recently, black-box modeling and especially
Artificial Neural networks have gained increased at-
tention for indoor temperature modeling with recent
studies suggesting a potential performance gain in
considering the thermal coupling between spaces in
buildings using large monolithic Multiple Input Mul-
tiple Ouput (MIMO) architectures (Mtibaa et al.
(2020); Fang et al. (2021)). However, the performance
of such architectures varies greatly with the specific
topology and operational patterns of the modeled
building and can in some cases be worse than the
simpler isolated Multiple Input Single Ouput (MISO)
model architectures (Mtibaa et al. (2020)). Further-
more, relying on one large black-box model for model-
ing the whole building makes it difficult to understand
and rectify the model, in case of poor model perfor-
mance. Therefore, we propose a different MISO ar-
chitecture, where each space is modeled individually
and only locally relevant thermal interaction between
spaces is considered.

The benefits of this are twofold: 1) Each space is
modeled separately, adding much greater modularity



and flexibility, compared to the mentioned monolithic
MIMO architecture. For instance, using the proposed
MISO architectures, some spaces can be modeled as
isolated while other spaces with non-negligible heat
transfer to adjacent spaces can be modeled using a
coupled architecture. 2) More training data is avail-
able due to the lower amount of inputs per model,
which can potentially improve performance (this is
further discussed in section ).

For the proposed coupled architecture to be feasi-
ble for practical implementation, an automated tool,
Ifc2Graph (Bjørnskov (2022)), has been developed.
Based on the open Industry Foundation Classes (IFC)
standard, the tool analyses the building geometry to
identify adjacent spaces. The two architectures are
tested on 70 spaces, highlighting the performance of
the two architectures in a realistic building setting.
The considered spaces are occupied and include ra-
diators for space heating, demand-controlled ventila-
tion, and automated shading.

The presented work is in line with the ongoing dig-
italization of the building sector and the need for
smarter buildings. The modularity and flexibility of
the proposed model architectures ensure seamless in-
tegration with future building Digital Twins, where
accurate and flexible indoor temperature models play
a crucial role in safely exploring and recommending
optimal building operation strategies without com-
promising indoor comfort. The presented work is car-
ried out as part of the international research project
’Twin4Build: A holistic Digital Twin platform for
decision-making support over the whole building life
cycle’, aiming to design, develop, and demonstrate a
holistic Digital Twin platform allowing coordinated
decision support over the whole building life cycle.
The proposed Digital Twin will provide the three fol-
lowing services: i) Flexible and effective data col-
lection and management employing open standard
context information models; ii) Smart facility man-
agement through performance monitoring and au-
tomated commissioning; and iii) Planning support
through model-based informed decision-making.

Case study

In this work, a Danish university building is consid-
ered as a case study for testing the two model archi-
tectures. The building was commissioned in 2015 and
was one of the first buildings in Denmark to comply
with the Danish building class 2020. It has four sto-
ries, including a basement with technical rooms, stor-
age, and installations. The ground floor, first floor,
and second floor are mainly devoted to teaching and
are composed of classrooms, offices, corridors, and
study zones. An image of the building is shown in
Figure 1.

The indoor climate is regulated through four balanced
mechanical ventilation systems, each with a capac-

Figure 1: The considered case study university build-
ing (Jradi et al. (2017)).

ity of 35,000 m3/h, while the heating source of the
building is district heating, supplying air-loop heat-
ing coils as well as radiators distributed across all
four stories. Most spaces are well-instrumented with
temperature, CO2, humidity, PIR, and lux sensors.
Furthermore, all radiators are equipped with thermo-
static valves that control the indoor temperature by
actuating the valve position. To ensure a proper in-
door climate, the BMS employs Demand Controlled
Ventilation (DCV) to regulate the airflows supplied
to the different zones in the building. Specifically,
for each space, the damper positions are actuated
to prevent the measured CO2-concentration from ex-
ceeding 600 ppm. To avoid overheating in the sum-
mer months, all outside-facing windows are equipped
with shades that are controlled by the BMS. With the
large scheme of sensors and meters instrumentation,
the building is used as a living lab to carry out investi-
gations and testing of various innovative applications
and research-based solutions.

Local weather data on hourly resolution in the form
of outdoor temperature, longwave solar irradiation,
and shortwave solar irradiation is available for the site
in hourly resolution. In Table 1, an overview of the
relevant data is given including a shorthand notation,
which will be used in the following sections. For the 8
types of data, we distinguish between data collected
at space-level and data collected at building level.

Table 1: Overview of relevant data collected from the
building.
Notation Type Space level (10 min) Building level (1 hour)

Tz Indoor temperature X
Cz CO2-concentration X
uv Radiator valve position X
ud Air diffusers damper position X
ush Shades position X
To Outdoor temperature X
ΦL Longwave solar irradiation X
ΦS Shortwave solar irradiation X

Methodology

In this section, the methodology used in this work
is presented. Overall, two model architectures are
investigated for the prediction of indoor temperature.
First, the model architectures and chosen inputs for
each of the model types are presented. Following, it



is explained how the overall space topology can be
automatically extracted from a Building Information
Model (BIM). It is then described how the collected
data has been preprocessed and how the resulting two
types of data sets differ. Finally, the training and
testing methodology is presented.

Model architecture

In this work, a specific sub-category of ANNs called
Recurrent Neural Networks (RNN) is used. The fun-
damental property of RNNs, that distinguishes them
from other ANN variants such as the Multi-Layer Per-
ceptron (MLP), is the inclusion of a system state that
changes over time. This additional notion of time
makes RNNs especially useful for the modeling of dy-
namic systems. In fact, the mathematical form of
vanilla RNNs is essentially a discretized form of Delay
Differential Equations (DDE) (Sherstinsky (2020)).
The Long Short-Term Memory (LSTM) model, devel-
oped by Hochreiter and Schmidhuber (1997), is a spe-
cific type of RNN, mainly designed to solve the Van-
ishing gradient problem that was encountered with
the vanilla RNN model. The main contribution of
the LSTM model is the addition of gated units that
control how information is added or removed from
the system state. For the LSTM model, the state is
described by two state vectors, the cell state c ∈ Rn

and the hidden state h ∈ [−1; 1]n, where n is a hyper-
parameter that describes the size of the state vectors,
i.e. how much information that can be transferred
between time steps.

Figure 2: Inputs for the isolated and coupled architec-
tures. The coupled architecture includes indoor tem-
peratures from adjacent spaces as input.

As already mentioned, two types of models are in-
vestigated in this work. These models will in the re-
maining sections be referred to as the isolated model
and the coupled model. The isolated model is based
on previous work of the authors (Bjørnskov et al.
(2022)), where the model inputs were determined
based on well-known heat transfer mechanisms, in-
cluding radiation, conduction through external sur-
faces, internal heat gains, ventilation, and heat added
by radiators. The inputs of the coupled model con-
sider the same heat transfer mechanisms. However,
in addition to that, it also considers heat transfer
through the non-external bounding surfaces, by in-

cluding the indoor temperature of the adjacent spaces
as input. An overview of the two model types is
shown in Figure 2. As seen, the only difference be-
tween the two model types is the inclusion of ad-
jacent space temperatures as input in the coupled
model. The network architecture of the two inves-
tigated models is seen in Figure 3. Both the isolated
model and the coupled model consist of two sequen-
tial LSTM networks, A and B. Network A receives
the inputs shown in Figure 2, i.e. it receives one set
of inputs for the isolated model and another set of in-
puts for the coupled model. In addition, Network A
receives as input the state vectors from the previous
time step cA;t�1 and hA;t�1 and outputs the updated
state vectors cA;t and hA;t. The size n of the state
vectors cA and hA will be referred to as nA.

Figure 3: Model architecture for both the isolated and
coupled model consisting of the sequential LSTM net-
works A and B. The model output is the predicted
temperature change of the modeled space during a
given time step.

Network B receives as input the updated hidden state
hA;t from network A along with its own state vectors
cB;t�1 and hB;t�1 from the previous time step. Net-
work B outputs the updated state vectors cB;t and
hB;t, both with size n = 1. hB;t is treated as the
model output which is fitted to the chosen prediction
target during training. As seen in Figure 3, the cho-
sen prediction target of the model is the temperature
change of the modeled space during a given time step
∆Tz;t. Through earlier investigations by the authors,
it was found that this configuration (rather than di-
rectly predicting temperature) generalized better for
custom control scenarios, e.g. when the model is im-
plemented in a setpoint control loop (Bjørnskov et al.
(2022)). The use of this configuration for indoor tem-
perature predictions is later explained in section .

Automated extraction of space topology

For a coupled model to be feasible in larger build-
ings, an efficient and automated method of identi-
fying adjacent spaces is required. With the signifi-
cant adoption rate of Building Information Modeling
(BIM), automatic extraction of geometrical building
data for the use in Building Energy Modeling (BEM)
tools is an active research area (BIM2BEM) and var-
ious algorithms have been developed for this purpose
(Treeck and Rank (2006); Rose and Bazjanac (2013);
Jones et al. (2013); Lilis et al. (2016)). Traditional
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