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Abstract 
This paper summarises the CEDRI method for 
quantifying baseline and future energy demand of a 
community – using a case-study community in Tamil-
Nadu. The overall method includes modules relating to: i) 
dynamic building simulation for projecting future 
scenarios, ii) Hidden Markov Models for characterising 
and synthesising high resolution demand profiles, iii) 
Distributed Network modelling for performance issues in 
the local energy system, iv) results of co-production and 
householder engagement to help understand existing  
energy use, and identify likely future trends. 
Although the method is designed to be technology-
agnostic, future scenarios are proposed to demonstrate the 
working of the model, and the kind of outputs and metrics 
that are achievable – and, crucially, why these might be 
useful to different actors and sectors involved with  
reducing energy demand in buildings. 
The work demonstrates that, for such diverse 
communities as can be found in India, replicability of 
method is more important than replicability of results. 
Rather than extrapolating the results of single case-study 
communities for much larger regions, CEDRI establishes 
a robust method that is agile enough to cope with different  
data limitations, building stocks, and behavioural 
approaches to comfort. The project also demonstrates the 
ability of dynamic building simulation to be used in 
conjunction with empirical energy data, network models, 
and qualitative information relating to cooling behaviour 
in specific populations. 
Key Innovations 

• Multi-disciplinary assessment of energy use in  
communities presented 

• Incorporation of user-centred co-production 
methods and physical/technical modelling 

• Tested out with real communities within a 
rapidly evolving part of the world 

Practical Implications 
The project shows the challenges in transferring methods 
of energy assessment to different environs. Although 
standard physical modelling has clear applications, 
variation due to household behaviour, culture, and 
external trends (climate, technology penetration etc) can 
be community- and geography-specific, requiring models  
to be adaptable to cope with different settings.  

 

Introduction 
When investigating built environment energy demand, 
there exist multiple end-use audiences who may require 
the results of any energy modelling tool. Building-
specific modelling can speak to individual householders, 
whether through simple energy compliance calculations 
(e.g. Energy Performance Certificates (BPIE, 2014)) or 
more detailed building simulation. National-level 
modelling can be used to test scenarios at a much larger 
spatial scale, whether through genuine energy system 
modelling (such as MARKAL/TIMES (Taylor et al., 
2014)) or network modelling. Community-level energy 
modelling, defined here as being at multi-building (100s -
1000s) scale, provides an interesting intersection between 
these two scales. There still exists the desire, and 
potential, to understand individual buildings (and 
occupants), but the modelling is at such scale to be useful 
to those actors working at network and energy system 
level, albeit at a local rather than national scale.  
This scale of modelling can also, arguably, provide 
information to those most closely aligned to actionable 
areas of impact. When developing solutions for local 
energy systems, metrics relating to local peak demand and 
other characteristics are important for understanding 
widespread changes in energy provision and demand (e.g. 
change in technology expected to dominate a market , 
climate change, and the medium- to long-term changes 
these might create). Likewise, a local authority looking to 
understand the impact of a demand-reduction plan across 
a community (through metrics of carbon saving potential 
and technology selection) will require the tailoring that is 
possible through community-scale modelling, without the 
over-generalisations that are often produced from 
national/stock level modelling. 
Regardless of geography, the challenge of producing 
workable, actionable demand reduction solutions across a 
community of buildings is multi-faceted. To ensure 
appropriate technology selection, it is necessary to 
consider the buildings themselves, the people using those 
buildings, and the local energy network serving them. 
Furthermore, the interactions between those different  
aspects require a deeper understanding of the issues that 
exist at model and disciplinary boundaries. When a 
specific country is identified for study, the challenge of 
capturing these variables, and how that might differ from 
other countries, becomes clear.  



The Community Energy Demand Reduction in India 
(CEDRI) project (CEDRI, 2018) comprises mult i-
disciplinary research that uses behavioural science, 
building physics, data science and understanding of 
energy networks to provide a method that can holistically  
overview the impact, and consequences, of different  
demand-reduction scenarios in Indian communities . 
Being specifically focussed on India, the project is 
particularly centred on the impact of a rising cooling 
demand, and how this could be mitigated. 
Modelling communities of buildings 
As already noted, community energy modelling requires 
a balance between building-specific detail and a level of 
data capture and computational efficiency that allows for 
scalability. For modelling focussed on the built  
environment, there are approaches that relate to empirical 
(use of real energy data), semi-empirical (modelling  
informed or calibrated by real energy data), or purely 
theoretical/physical modelling (Jenkins et al., 2020). The 
challenge with built environment energy modelling is not 
a lack of tools, but rather ascertaining the outputs required 
(and, often, the end-use audience), and then working 
backwards to an appropriate method that is robust and 
reliable for delivering those specific outputs. So, whilst a 
simple steady-state tool may be appropriate for a local 
authority wishing for a snapshot of energy ratings across 
a local housing stock, an investigation of current versus 
future peak demand across that community will not be 
served well by the same tools. Conversely, providing that 
same local authority with transient energy profiles from 
more computationally-intensive simulation models may  
also be inappropriate. 
Even when selecting more detailed thermal simulation , 
capable of dynamic calculations that allow us to 
investigate energy as a function of time, it is often the case 
that, as we increase spatial scale of energy modelling (e.g. 
from singular to multiple buildings), there is a 
compromise to be made on some level of detail of the 
individual buildings. This may require a simplification of 
the input data (e.g. generalising building archetypes in 
some way (McCallum, Jenkins and Vatougiou, 2020)) 
and/or decreasing the temporal resolution (or other 
characteristic) of the model output. 
This compromise can be evident in large-scale energy 
system models, such as MARKAL/TIMES, where 
optimisation can be carried out on multiple parameters  
across, ultimately, an entire country (e.g. for informing  
energy policy (Scottish Government, 2017)) but the 
temporal resolution of the energy calculations tend to be 
limited to profiles representing a finite number of design 
days. Even here, where transient demand profiles can be 
used, there is a reliance on the use of existing demand data 
to generate results. This makes the quantification of future 
scenario modelling difficult within such models, though 
is an area in constant development (Zeyringer et al., 
2014).    
Although, traditionally, relying on largely theoretical 
assessments of energy use, dynamic simulation gives the 
temporal resolution required for more detailed, transient 

energy analysis. Furthermore, the use of such modelling  
for multi-building simulation is now relatively common 
due to improvements in efficiency of calculation and 
usability (Sousa et al., 2017; Jenkins, 2018).  
However, particularly when incorporating specific  
behaviours and attitudes within a community that may be 
different to assumed norms or averages, the use of real 
energy data is of great value (Murray, Stankovic and 
Stankovic, 2017). Although forms of empirical non-
energy data can inform models, such as diary data 
(Suomalainen et al., 2019), “energy behaviour” in 
theoretical models do not really go much further than 
simple activity schedules, often assumed to repeat in a 
very simplified way. As with theoretical modelling, there 
is still the need to bridge scale in empirical statistical 
modelling; that is, using the causation that is possible 
from individual buildings (from highly stochastic, low 
load factor profiles), whilst understanding that the 
aggregated form of that data (for multiple buildings, 
where load factor is higher due to diversity being 
accounted for) is generally of more value to many end-
users, particularly those working with energy networks. 
Techniques for generating such diversity have been 
applied in the CEDRI project (Patidar et al., 2018), and 
are noted later in this paper. 
Energy demand in Indian buildings 
Although an energy model may be designed with  
universality in mind, it is still important to understand the 
particulars of a given case-study area to be analysed. This 
is necessary to adequately account for the characteristics 
of that area (climate, housing stock, cultural factors etc) 
but also to understand the availability of the data 
describing those characteristics. An understanding of this 
may, ultimately, result in a model not being suitable for 
that area (as a key data input is unavailable) or 
assumptions might have to be updated to allow for 
modelling of a factor that is not described in a purely 
empirical way. 
For a country as large and diverse as India, it is difficult  
to make assumptions of future demand at country-scale. 
Rather, geographies, buildings, behaviour towards 
energy, condition of the energy network, and climate all 
make more sense at a localised level. This potentially 
provides an argument for bottom-up modelling  
approaches that can be tailored on specific areas, with an 
understanding that limitations apply when upscaling such 
assessments (Yu et al., 2017). Significant datasets now 
exist that attempt to describe building energy use at this 
localised level in India, albeit with some limitations on 
spatial and temporal resolution (GBPN, 2014). 
For any scale of extrapolation to regional/national level, 
the lack of reliable building data to map this onto is a 
known problem in India. For example, previous census 
data (Ministry of Home Affairs, no date) describes 5% of 
India’s 187 million homes as dilapidated, 58 million as 
“semi-permanent”, and 35 million as “temporary”. This 
will limit the data available to a community energy 
modeller in terms of quality (e.g. data for non-permanent 
homes not being recorded in a standardised way) and 



quantity (large proportions of homes not subject to 
regulatory processes that might involve capturing of data 
in the first place). However, the introduction of the Indian 
Energy Conservation Building Code (ECBC) (IMFR, 
2015) demonstrates that energy efficiency is a growing  
concern and “green buildings” are becoming more 
established in the marketplace (reported as costing only 
5% more than traditional buildings in India (Smith , 
2015)). 
For any modelling intending to understand future 
evolution of energy demand, India provides a further 
challenge; this is a country undergoing rapid change. 
Between 2000 and 2012, India’s annual residential energy 
consumption rose from 80TWh to 186TWh (Shukla, 
Rawal and Shnapp, 2015). It is projected that there could 
be 40 billion m2 of new buildings by 2050 (Yu et al., 
2017), with residential buildings already contributing an 
estimated 23% of electrical demand (Ministry of Statistics 
and Programme Implementation, 2016). Future energy 
modelling, of the type carried out by CEDRI, must 
therefore be highly contextualised with clear future 
energy scenarios.  
Climate change, changes in purchasing power of a rising  
middle-class, and availability of technology is likely to 
mean that residential cooling plays a major part in this 
changing energy demand. This also means that, even if 
attempting demand reduction in a particular case-study 
(where, for example, appliance usage/penetration may  
have reached a higher level of maturity than elsewhere in 
the country), strategies for managing electricity demand 
across the whole country are likely to focus on reducing 
an inevitable rise in demand, rather than attempting a 
reduction in total demand from current levels.  
Modelling approaches by discipline 
Figure 1 illustrates the different sections of analysis that 
CEDRI has incorporated, and the intentions of these 
different disciplinary areas.  

 
Figure 1: CEDRI project by discipline and activity 

The detail of the modelling lends itself to community -
scale case-study analysis, where data can be recorded at 
suitable resolution and, therefore, the assessment closely 
tailored to that case-study. CEDRI monitored weather and 
energy data from the chosen case-studies, were provided 
with some physical building information, and had access 
to householders themselves (during several site visits). 
The application of the method to a particular case-study is 
described later in the paper. 

The project can therefore be described in terms of the 
analysis of three areas: i) Network modelling, ii) Building  
demand, and iii) Energy behaviours. Crucially, CEDRI 
attempts to bring these analyses together to describe a 
more complete picture of community energy use, with the 
additional intention of using this to provide guidance on 
demand reduction opportunities. These individual areas of 
analysis are summarised below. 
Local energy networks 
Distributed network models are well-established in 
industry for describing power flows at different locations 
of an electricity grid. Electricity network modelling  
usually aims to determine power flows and electrical 
characteristics such as voltage and current of the network, 
which result from local electricity demand and 
production. The methodology proposed within CEDRI is 
to use electricity grid modelling to assess the need for 
electric load reshaping due to technical constraints on the 
electric grid. Indeed, if local community consumption or 
production at specific times is beyond the acceptable 
limits of the electricity grid, it should be reduced 
accordingly depending on the technical and social 
acceptability of this reduction. To assess the compatibility 
of local electricity consumption with local grid  
characteristics, the CEDRI methodology considered 
distributed radial networks modelling, that corresponds 
best to local community infrastructures. Based on the 
physical characteristics of local networks, such as length 
and size of cables, materials, number of phases, electrical 
equipment (transformers), and  location of the cables 
(underground or overhead), an electricity grid model 
computes the resulting impedances of each section of the 
electricity grid. Loads such as households are considered 
as ZIP loads, either with a constant power, impedance, or 
current consumption. Distributed production assets such 
as solar PV are also included in the model, and can be 
controlled to provide grid services such as voltage 
regulation (Couraud et al., 2019). Using time-series  
inputs for household load profiles and distributed energy 
resources production, the electricity grid model is used to 
compute the resulting voltages and currents at each node 
of the network. Depending on these results, the network 
modelling activity can then highlight a need for demand 
reduction at specific nodes or phases or, on the contrary, 
a demand increase to prevent local over-voltage at 
specific times. These requirements are then sent to the 
other two CEDRI disciplines (building demand and 
energy behaviours) so they can assess the feasibility of the 
requested demand shift (Antonopoulos et al., 2021). The 
resulting new load profiles from these two other 
disciplines are then reassessed by the network modelling  
activity to ensure they result in acceptable electrical 
voltage and currents. Following an iterative approach, the 
CEDRI method results in optimal demand profiles that 
meet end-users requirements as well as thermal and 
electrical specifications. 
Modelling building energy demand 
The built environment demand modelling of CEDRI is 
split between dynamic physical modelling (to help 



estimate the impact on specific building types from future 
scenarios) and statistical modelling of metered demand 
data (to understand diversity of current and future demand 
at a higher resolution). 
Dynamic building modelling was conducted with  
EnergyPlus software, via DesignBuilder. This approach 
was selected due to the need to generate transient thermal 
building response and internal temperature profiles, as 
conducted in other residential studies (Yoon, Baldick and 
Novoselac, 2014; Huang and Wu, 2019). Although based 
on purely theoretical/physical modelling, this enabled the 
project to test specific retrofit approaches (e.g. building  
fabric) that may impact the temperature profiles in a 
positive sense, and therefore be demand-reducing 
measures that could be communicated and discussed with 
the householder.  
In addition to the physical modelling, there was a need to 
upscale the measured energy demand data to represent a 
greater number of homes – and a desire to morph demand 
to account for changing external factors such as climate 
change. Therefore, a stochastic demand synthesising 
approach (specifically, STL-HMM-GP, described 
elsewhere (Patidar, Tanner, et al., 2021)) was adopted that 
integrates a ‘climate module’. The STL-HMM-GP 
algorithm facilitates detangling of complex demand 
profiles using a Seasonal Trend based on Loess (STL) 
decomposition approach (Cleveland et al., 1990) and 
simulates the resulting stochastic component of high 
resolution demand using a Hidden-Markov Model 
Generalised Pareto (HMM-GP). The modelling approach 
can therefore be summarised in the following steps: 

1. An STL decomposition algorithm is applied to 
decompose the electricity demand series into 
three components: i) Trend, ii) Seasonal and iii) 
Residual (stochastic) variations 

2. The trend component of electricity demand is 
associated with the trend component of climate 
variables (temperature, relative humidity, solar 
radiation, wind direction, wind speed) through a 
partial least square regression (Guebel and 
Torres, 2013) to generate climate morphed  
trends 

3. The residual component is fitted to a HMM 
model to simulate plausible profiles that match  
characteristics of the observed series 

4. Electricity demands are synthesised by 
combining i) climate morphed trend of 
electricity demand (generated in step 2); ii) 
seasonal components (extracted from observed 
demand in step 1); and iii) simulated random 
components (generated using HMM in step 3). 

5. Extreme values (>95th percentile) in the 
synthetic profiles are sampled from a GP 
distribution of extreme values of the observed 
profiles 

6. A percentile-based bias correction is applied to 
account for logarithmic transformation of the 
original series 

At the resolution desired (~minutely), Step 2 is crucial to 
accounting for diversity when aggregating multip le 
profiles together. This enables the tool to produce 
individual household profiles and, from these, aggregated 
profiles of multiple dwellings that could be linked to 
different future demand scenarios.  
Household choices and behaviour 
As well as focussing on the physical buildings and energy 
networks, it was essential for CEDRI to understand i) 
household actions that might explain the demand 
characteristics recorded and ii) how householders may 
change energy behaviour in the future, and respond to 
attempts to reduce and/or manage residential demand 
(with a particular focus on cooling). 
Current energy practices were captured using both 
qualitative (observations, interviews) and quantitative 
approaches (Osunmuyiwa et al., 2020). Twenty in-depth 
interviews were conducted with two different groups of 
householders. Group A had ten participants in monitored  
households. Group B had ten participants representing 
non-monitored households within Auroville . 
Interviewees exhibited diversity in appliance ownership, 
nationality, age, gender, building type, and household 
type (single or multigenerational). Interview questions 
converged around (i) local energy networks (grid  
challenges and adoption of solar PV); (ii) building type 
and its relations to cooling preferences; (iii) electricity use 
and cooling consumption behaviour in relation to 
individual and community values. 
The interview data was used in designing the larger 
questionnaire. The questionnaire covered broader topics 
such as appliance ownership and usage, energy saving and 
pro-environmental behaviours, barriers to energy efficient  
behaviours, and preferences around Time of Use (ToU) 
demand response. The questionnaire was sent to 2000 
people within Auroville, with 6% fully completed.  
To generate scenarios for future energy practices, two 
types of co-production workshops were conducted 
(Osunmuyiwa et al., 2021). The first co-production 
workshop was with households who had either 
participated in the interviews or questionnaire. Three 
types of exercise shaped the workshop: 

• Extracted information from the questionnaire 
around ToU was presented alongside 30 year 
climate analysis of Auroville  

• Participants were introduced to a demand 
management matrix with both technological and 
behavioural changes (minor, incremental, and 
disruptive shifts). They were asked to identify  
where they and the community were and discuss 
how energy practices will be altered based on 
this change  

• A series of Demand Response (DR) cooling 
flexibility options were presented in lay terms  
and, through a scenario-based exercise, 
participants were tasked with creating a DR 
cooling policy for the community 



A second co-production workshop was conducted with  
practitioners in Delhi. Twenty-five practitioners including  
academics, representatives of local utilities, policy think 
tanks, and regulatory actors were invited based on their 
knowledge of and experience with India’s electricity  
networks and the built environment. Practitioners were 
asked to discuss current and future challenges around the 
implementation of DR strategies at the building and 
network level. 

Integrating across model boundaries 
It is not always possible, or desirable, to “hard-wire” 
different assessment techniques. For example, barriers  
between translating qualitative information (collected in 
co-production exercises) into input for a quantitative 
building model can make such direct integration tenuous. 
However, CEDRI allows the different techniques to 
influence each other by using common scenarios, 
responding to the same case-study, and allowing for direct 
communication where relevant and useful.  
A diagrammatic representation of this integration is 
shown in Figure 2. Rather than describing a genuine, top-
level energy system model, this structure allows for a 
different selection of tools to be used for different  
questions asked of community energy – and different  
points of integration between model boundaries can be 
seen for these different questions. For example, the 
network model can use synthesised demand data from the 
building modelling work, for both a baseline and future 
scenario, to understand the impact of projected demand 
changes on network performance. Cooling profiles  
extracted from demand data can be linked to the real 
activities (and cooling behaviours) reported in the 
householder study (e.g. reasons for operating A/C in a 
certain way). Choice of modelled demand reduction 
measures, within a dynamic simulation environment, can 
be tailored on feedback from a specific community to 
increase likelihood of those measures being accepted, and 
their projected savings realised. Broadly these questions 
can be categorised between those that might be posed by 
the network, and those posed by the householder – the 
latter requiring individual building assessment, the former 
some form of aggregation at scale. 
 

 
Figure 2: Integration of modelling activities in CEDRI 

 

Application of method for Auroville case-
study 
Auroville is an intentional, and international, community  
in Tamil-Nadu with a population of 50,000. Two blocks 
of apartment buildings – “Citadines” and “Inspiration” – 
were monitored by CEDRI, containing 34 and 14 flats 
respectively (of which 21 and 9 units were chosen to be 
metered). Table 1 summarises these metered dwellings. 
Other information was also recorded, such as type of 
lighting (noting a diverse mix of incandescent, CFL, LED 
and T5 with Electronic Ballast), use of electric fans and/or 
air conditioning (A/C), and other common household 
appliances (such as refrigerators). Unusually, cooking in 
Citadines was often via a community kitchen where most 
of the residents have their lunch. Cooking in other homes 
was often with a gas stove. This therefore had a clear 
impact on measured electricity demand, where cooking 
(in homes with individual electric stoves) can be a 
recognisable, and definable, period in the day.  
The dwellings have single phase blink meters for 
monitoring electricity consumption, operating at a 
resolution of 16,000 blinks/kWh specification (0.06 
Wh/blink) and three-phase meters with blink resolution of 
800 blinks/kWh (1.25 Wh/blink). As the frequency of 
recording relies on the level of demand for blink meters, 
the monitored electricity consumption had irregular 
timestamps and data-cleaning methods were used to 
convert this to minutely resolution data, as further 
elaborated elsewhere (Debnath et al., 2020). The 
household electricity consumption data was collected for 
November 2018-June 2019. 

Table 1: Summary of Auroville metered properties 
Flats No. of 

dwellings 
No. of 

occupants 
Heating 

type 
Cooling 

type 
Citadines 21 23 None Fans, 

A/C Inspiration 9 10 Geyser 
The CEDRI method was used with this case-study to 
answer several research questions, a selection of which 
are noted below. 
Synthesising electricity demand 
Using the synthesis technique identified earlier, Figure 3 
shows an example of a synthesised profile for a dwelling  
in Auroville, compared to an observed dataset. The 
technique demonstrates that semi-stochastic demand 
profiles can be synthesised from empirical datasets, and 
mimic the behaviour (in this case, particularly cooling 
behaviour) of real households in the original sample 
(Patidar, Jenkins, et al., 2021). This then allows for mult i-
building aggregation that accounts for diversity and can 
be compared to substation-level demand profiles. 
Furthermore, with correlation identified between demand 
profile and other factors (e.g. external temperature, 
household occupancy, number of cooling devices), the 
aggregated demand profile can be morphed for a future 
scenario where such factors may be different (e.g. climate 
change, patterns of home-working, increase uptake in 
mechanical cooling). 
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Figure 3: (a) Observed and (b) synthesised Auroville 

individual dwelling electricity demand profile 
An example of this is shown in Figure 4, where 
synthesised, aggregated demand data for 610 dwellings  
has been altered to account for future, projected climate 
parameters (using the previously reference algorithms). 
Furthermore, this is still linked to a series of individual 
demand profiles (making up that aggregation) that can be 
used within the previously described networking  
modelling to ensure suitable local network performance. 
 

 
Figure 4: Example of future-morphed (2040-60) 
aggregated demand profile (N=610) compared to 

baseline (2020) 
Building fabric futureproofing  
CEDRI’s dynamic building simulation approach 
(informed by the monitored data) shows the potential to 
reduce average daily indoor temperature and cooling 
electricity consumption during summer by retrofitting  
exterior walls and roof with insulating materials (Debnath 
and Jenkins, 2022). These materials should be 
implemented cautiously as the use of natural (and 
mechanical) ventilation instead of A/Cs in highly 
insulated buildings may increase the indoor temperature 
significantly. The size and nature of the simulation study 

was not intended for generalising community-scale 
conclusions for cooling demand across India. Instead, the 
study demonstrated a process where measured electricity  
consumption data combined with simulation, and 
contextual information of community households, can be 
used to enhance understanding of building insulation on 
indoor temperature and aggregated cooling energy 
demand. This was specifically considered for a residential 
community where A/C ownership was increasing, 
informed by the interactions, surveys, and co-production 
activities with the community itself. 
Understanding local drivers of energy behaviour 
Broad synthesis from CEDRI’s behavioural analysis 
shows that current energy practices are driven by 
environmental identity, values, and emerging ecological 
realities (heat waves). While environmental values led to 
technological shifts such as the purchase of energy-
efficient cooling appliances, subsequent patterns of use 
were profoundly shaped by situational factors (building, 
householders’ health status, children etc.). 
This analysis also helped explain the lack of diverse 
features in the measured demand profiles (such as in 
Figure 3). A relative homogeneity of non-cooling activity 
meant that the characteristics of electricity demand were 
highly correlated with approaches to cooling and 
summertime comfort.   
Future scenario development 
CEDRI’s co-production approach shows that households 
have an appetite for radical technical innovations (e.g., 
demand response for cooling automation), especially if 
consulted and energy planners involve them in the design 
process. However, caution must be exercised as the 
observed appetite for technical innovation prevailed in 
areas with strong biospheric and altruistic values for the 
environment. Other forms of values, cultures and norms 
might be the prevailing factors in other local contexts. As 
such, negotiations around cooling practices must be 
considered – as automation will trigger new 
configurations of practices. Furthermore, India needs a 
blueprint of resources and toolkits on the range of 
ancillary services householders will offer. Efforts should 
be made to sensitise users on the requirements (capital and 
resources) of taking up such a role. 
Additionally, the triggers for current cooling practices and 
appliance purchasing (and therefore the modelling of 
increased penetration of cooling devices across the wider 
building stock) was complex (Osunmuyiwa et al., 2020). 
A “perception” of temperature, informed by wider 
discussions with (for example) medical practitioners, as 
well as the actually recorded temperature, played a part in 
i) a decision to purchase a cooling device and ii) how that 
device would be operated. Quantitative building models  
are not necessarily designed to translate such current and 
future actions into an aggregated cooling model of 
multiple homes. 
Information required by practitioners 
The second co-production workshop with practitioners, 
noted above, used Auroville as a case-study but brought 



in participants working more generally across India. The 
multidisciplinary nature of the project meant that 
technical issues relating to the future grid provision could 
be used to frame this qualitative exercise (Osunmuyiwa et 
al., 2021). The intention was to understand the value of 
the tools and wider analysis being conducted by CEDRI. 
Specifically, practitioners: 

1. Identified challenges around the implementation  
of energy demand flexibility policies for 
residential buildings in India 

2. Unpacked core issues currently affecting India’s 
local electricity networks and discussed potential 
changes in the next few decades, and how to 
address them  

3. Suggested an increasing role for householders as 
prosumers and de-facto suppliers of ancillary  
services in India 

This discussion demonstrated the difficult gap between 
future scenario mapping and actually delivering and 
designing a working energy system; the former allows a 
contributor to be speculative and discursive across 
multiple futures, whereas the latter requires definitive and 
actionable information. Within a rapidly changing 
landscape (as is observed in India), this places a great 
burden, and risk, on the assumptions used. 
Further work 
Inevitably, the work of CEDRI identified outstanding 
questions that could not be fully addressed by the project. 
The conversations had with practitioners noted an 
information gap for specific applications of demand 
response, and the communication of this to end-users.  
Additionally, more tools/information are required to 
support policymakers and planners so that they can reflect  
values and norms when designing interventions to support 
a low-carbon energy transition. But these tools need to 
also be sensitive to behavioural and cultural values of the 
communities being studied – and quantitative tools are not 
always designed to do this. CEDRI adds to this toolkit, 
but in a relatively technology-agnostic way. Addressing 
the consequences of targeted technology adoption would 
be of great value. 
Finally, more work is required on the technical (and/or 
statistical) limitations to extrapolating bottom-up 
modelling of the type described here. Likewise, there is 
value to further exploring potential bridging between this 
type of modelling and traditional, top-down energy 
system models. Doing so in a user-focussed way could 
provide more consistent recommendations that have a 
grounding in national energy policy, but are able to reflect  
specific issues facing discrete regions and communities.  
Conclusion 
A summary of findings from a multidisciplinary approach 
to community energy assessment in India has been 
presented. The work demonstrates the value of 
understanding buildings, energy networks, and the people 
using those buildings – but recognising, from a modelling 
perspective, where these different assessments can 
interact with each other to answer specific questions. The 

process of tailoring the models to a specific area of India 
demonstrates modelling functions that require 
development with local challenges in mind (e.g. available 
data, areas of energy use that are more important), whilst  
also noting techniques that have the potential for 
transferability to very different geographic areas of study. 
The work of CEDRI notes in particular that:   

• There is a need to match demand reduction 
strategies to specific communities with an 
understanding of future change in those 
communities 

• Synthesising and upscaling demand profiles of 
buildings can help characterise these changes 
within nodal electricity network models and, 
therefore, the impact on local energy systems 

• Purchasing and energy behaviours of households 
are crucial to the success of demand-reduction 
strategies – and care should be taken in over-
generalising the extent of these behaviours to 
other communities 

• Local behavioural and cultural aspects of energy 
use can (and should) be reflected in quantitative 
energy modelling, but this is difficult to achieve 
without direct engagement with those 
communities. Examples of this engagement have 
been demonstrated in this paper. 
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