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Abstract

This paper summarises the CEDRI method for
quantifying baseline and future energy demand of a
community — using a case-study community in Tamil-
Nadu. The overall method includes modules relating to: i)
dynamic building simulation for projecting future
scenarios, ii) Hidden Markov Models for characterising
and synthesising high resolution demand profiles, iii)
Distributed Network modelling for performance issues in
the local energy system, iv) results of co-production and
householder engagement to help understand existing
energy use, and identify likely future trends.

Although the method is designed to be technology-
agnostic, future scenarios are proposed to demonstrate the
working of'the model, and the kind of outputs and metrics
that are achievable — and, crucially, why these might be
useful to different actors and sectors involved with
reducing energy demand in buildings.

The work demonstrates that, for such diverse
communities as can be found in India, replicability of
method is more important than replicability of results.
Rather than extrapolating the results of single case-study
communities for much larger regions, CEDRI establishes
a robust method that is agile enough to cope with different
data limitations, building stocks, and behavioural
approaches to comfort. The project also demonstrates the
ability of dynamic building simulation to be used in
conjunction with empirical energy data, network models,
and qualitative information relating to cooling behaviour
in specific populations.

Key Innovations

e  Multi-disciplinary assessment of energy use in
communities presented

e Incorporation of user-centred co-production
methods and physical/technical modelling

e Tested out with real communities within a
rapidly evolving part of the world

Practical Implications

The project shows the challenges in transferring methods
of energy assessment to different environs. Although
standard physical modelling has clear applications,
variation due to household behaviour, culture, and
external trends (climate, technology penetration etc) can
be community- and geography-specific, requiring models
to be adaptable to cope with different settings.

Introduction

When investigating built environment energy demand,
there exist multiple end-use audiences who may require
the results of any energy modelling tool. Building-
specific modelling can speak to individual householders,
whether through simple energy compliance calculations
(e.g. Energy Performance Certificates (BPIE, 2014)) or
more detailed building simulation. National-level
modelling can be used to test scenarios at a much larger
spatial scale, whether through genuine energy system
modelling (such as MARKAL/TIMES (Taylor et al.,
2014)) or network modelling. Community-level energy
modelling, defined here as being at multi-building (100s -
1000s) scale, provides an interesting intersection between
these two scales. There still exists the desire, and
potential, to understand individual buildings (and
occupants), but the modelling is atsuch scale to be useful
to those actors working at network and energy system
level, albeit at a local rather than national scale.

This scale of modelling can also, arguably, provide
information to those most closely aligned to actionable
areas of impact. When developing solutions for local
energy systems, metrics relating to local peak demand and
other characteristics are important for understanding
widespread changes in energy provision and demand (e.g.
change in technology expected to dominate a market,
climate change, and the medium- to long-term changes
these might create). Likewise, a local authority looking to
understand the impact ofa demand-reduction plan across
a community (through metrics of carbon saving potential
and technology selection) will require the tailoring that is
possible through community-scale modelling, without the
over-generalisations that are often produced from
national/stocklevel modelling.

Regardless of geography, the challenge of producing
workable, actionable demand reduction solutions across a
community of buildings is nulti-faceted. To ensure
appropriate technology selection, it is necessary to
consider the buildings themselves, the people using those
buildings, and the local energy network serving them.
Furthermore, the interactions between those different
aspects require a deeper understanding of the issues that
exist at model and disciplinary boundaries. When a
specific country is identified for study, the challenge of
capturing these variables, and how that might differ from
other countries, becomes clear.



The Community Energy Demand Reduction in India
(CEDRI) project (CEDRI, 2018) comprises multi-
disciplinary research that uses behavioural science,
building physics, data science and understanding of
energy networks to provide a method that can holistically
overview the impact, and consequences, of different
demand-reduction scenarios in Indian communities.
Being specifically focussed on India, the project is
particularly centred on the impact of a rising cooling
demand, and how this could be mitigated.

Modelling communities of buildings

As already noted, community energy modelling requires
a balance between building-specific detail and a level of
data capture and computational efficiency that allows for
scalability. For modelling focussed on the built
environment, there are approaches that relate to empirical
(use of real energy data), semi-empirical (modelling
informed or calibrated by real energy data), or purely
theoretical/physical modelling (Jenkins ef al., 2020). The
challenge with built environment energy modelling is not
a lack oftools, but ratherascertaining the outputs required
(and, often, the end-use audience), and then working
backwards to an appropriate method that is robust and
reliable for delivering those specific outputs. So, whilst a
simple steady-state tool may be appropriate for a local
authority wishing for a snapshot ofenergy ratings across
a local housing stock, an investigation of current versus
future peak demand across that community will not be
served well by the same tools. Conversely, providing that
same local authority with transient energy profiles from
more computationally-intensive simulation models may
also be inappropriate.

Even when selecting more detailed thermal simulation,
capable of dynamic calculations that allow us to
investigate energy as a function of time, it is often the case
that, as we increase spatial scale of energy modelling (e.g.
from singular to multiple buildings), there is a
compromise to be made on some level of detail of the
individual buildings. This may require a simplification of
the input data (e.g. generalising building archetypes in
some way (McCallum, Jenkins and Vatougiou, 2020))
and/or decreasing the temporal resolution (or other
characteristic) of the model output.

This compromise can be evident in large-scale energy
system models, such as MARKAL/TIMES, where
optimisation can be carried out on multiple parameters
across, ultimately, an entire country (e.g. for informing
energy policy (Scottish Government, 2017)) but the
temporal resolution of the energy calculations tend to be
limited to profiles representing a finite number of design
days. Even here, where transient demand profiles can be
used, there is a reliance on the use ofexisting demand data
to generate results. This makes the quantification of future
scenario modelling difficult within such models, though
is an area in constant development (Zeyringer et al.,
2014).

Although, traditionally, relying on largely theoretical

assessments ofenergy use, dynamic simulation gives the
temporal resolution required for more detailed, transient

energy analysis. Furthermore, the use of such modelling
for multi-building simulation is now relatively common
due to improvements in efficiency of calculation and
usability (Sousa et al., 2017; Jenkins, 2018).

However, particularly when incorporating specific
behaviours and attitudes within a community thatmay be
different to assumed norms or averages, the use of real
energy data is of great value (Murray, Stankovic and
Stankovic, 2017). Although forms of empirical non-
energy data can inform models, such as diary data
(Suomalainen et al., 2019), “energy behaviour” in
theoretical models do not really go much further than
simple activity schedules, often assumed to repeat in a
very simplified way. As with theoretical modelling, there
is still the need to bridge scale in empirical statistical
modelling; that is, using the causation that is possible
from individual buildings (from highly stochastic, low
load factor profiles), whilst understanding that the
aggregated form of that data (for multiple buildings,
where load factor is higher due to diversity being
accounted for) is generally of more value to many end-
users, particularly those working with energy networks.
Techniques for generating such diversity have been
applied in the CEDRI project (Patidar et al., 2018), and
are noted later in this paper.

Energy demand in Indian buildings

Although an energy model may be designed with
universality in mind, it is still important to understand the
particulars of a given case-study area to be analysed. This
is necessary to adequately account for the characteristics
of that area (climate, housing stock, cultural factors etc)
but also to understand the availability of the data
describing those characteristics. An understanding of this
may, ultimately, result in a model not being suitable for
that area (as a key data input is unavailable) or
assumptions might have to be updated to allow for
modelling of a factor that is not described in a purely
empirical way.

For a country as large and diverse as India, it is difficult
to make assumptions of future demand at country-scale.
Rather, geographies, buildings, behaviour towards
energy, condition of the energy network, and climate all
make more sense at a localised level. This potentially
provides an argument for bottomup modelling
approaches that can be tailored on specific areas, with an
understanding that limitations apply when upscaling such
assessments (Yu et al., 2017). Significant datasets now
exist that attempt to describe building energy use at this
localised level in India, albeit with some limitations on
spatial and temporal resolution (GBPN, 2014).

For any scale of extrapolation to regional/national level,
the lack of reliable building data to map this onto is a
known problem in India. For example, previous census
data (Ministry of Home Affairs, no date) describes 5% of
India’s 187 million homes as dilapidated, 58 million as
“semi-permanent”, and 35 million as “temporary”. This
will limit the data available to a community energy
modeller in terms of quality (e.g. data for non-permanent
homes not being recorded in a standardised way) and



quantity (large proportions of homes not subject to
regulatory processes that might involve capturing of data
in the first place). However, the introduction of the Indian
Energy Conservation Building Code (ECBC) (IMFR,
2015) demonstrates that energy efficiency is a growing
concern and “green buildings” are becoming more
established in the marketplace (reported as costing only
5% more than traditional buildings in India (Smith,
2015)).

For any modelling intending to understand future
evolution of energy demand, India provides a further
challenge; this is a country undergoing rapid change.
Between 2000 and 2012, India’s annualresidential energy
consumption rose from 80TWh to 186TWh (Shukla,
Rawal and Shnapp, 2015). It is projected that there could
be 40 billion m? of new buildings by 2050 (Yu et al.,
2017), with residential buildings already contributing an
estimated 23% of electrical demand (Ministry of Statistics
and Programme Implementation, 2016). Future energy
modelling, of the type carried out by CEDRI, must
therefore be highly contextualised with clear future
energy scenarios.

Climate change, changes in purchasing power of a rising
middle-class, and availability of technology is likely to
mean that residential cooling plays a major part in this
changing energy demand. This also means that, even if
attempting demand reduction in a particular case-study
(where, for example, appliance usage/penetration may
have reached a higher level of maturity than elsewhere in
the country), strategies for managing electricity demand
across the whole country are likely to focus on reducing
an inevitable rise in demand, rather than attempting a
reduction in total demand from current levels.

Modelling approaches by discipline

Figure 1 illustrates the different sections of analysis that
CEDRI has incorporated, and the intentions of these
different disciplinary areas.
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Figure 1: CEDRI project by discipline and activity

The detail of the modelling lends itself to community -
scale case-study analysis, where data can be recorded at
suitable resolution and, therefore, the assessment closely
tailored to that case-study. CEDRI monitored weather and
energy data from the chosen case-studies, were provided
with some physical building information, and had access
to householders themselves (during several site visits).
The application of the method to a particular case-study is
described later in the paper.

The project can therefore be described in terms of the
analysis of three areas: i) Network modelling, ii) Building
demand, and iii) Energy behaviours. Crucially, CEDRI
attempts to bring these analyses together to describe a
more complete picture of community energy use, with the
additional intention of using this to provide guidance on
demand reduction opportunities. These individual areas of
analysis are summarised below.

Local energy networks

Distributed network models are well-established in
industry for describing power flows at different locations
of an electricity grid. Electricity network modelling
usually aims to determine power flows and electrical
characteristics such as voltage and current of the network,
which result from Ilocal -electricity demand and
production. The methodology proposed within CEDRI is
to use electricity grid modelling to assess the need for
electric load reshaping due to technical constraints on the
electric grid. Indeed, if local community consumption or
production at specific times is beyond the acceptable
limits of the electricity grid, it should be reduced
accordingly depending on the technical and social
acceptability of this reduction. To assess the compatibility
of local electricity consumption with local grid
characteristics, the CEDRI methodology considered
distributed radial networks modelling, that corresponds
best to local community infrastructures. Based on the
physical characteristics of local networks, such as length
and size of cables, materials, number of phases, electrical
equipment (transformers), and location of the cables
(underground or overhead), an electricity grid model
computes the resulting impedances of each section of the
electricity grid. Loads such as households are considered
as ZIP loads, either with a constant power, impedance, or
current consumption. Distributed production assets such
as solar PV are also included in the model, and can be
controlled to provide grid services such as voltage
regulation (Couraud et al., 2019). Using time-series
inputs for household load profiles and distributed energy
resources production, the electricity grid model is used to
compute the resulting voltages and currents at each node
of the network. Depending on these results, the network
modelling activity can then highlight a need for demand
reduction at specific nodes or phases or, on the contrary,
a demand increase to prevent local over-voltage at
specific times. These requirements are then sent to the
other two CEDRI disciplines (building demand and
energy behaviours)so they can assess the feasibility of the
requested demand shift (Antonopoulos et al., 2021). The
resulting new load profiles from these two other
disciplines are then reassessed by the network modelling
activity to ensure they result in acceptable electrical
voltage and currents. Following an iterative approach, the
CEDRI method results in optimal demand profiles that
meet end-users requirements as well as thermal and
electrical specifications.

Modelling building energy demand

The built environment demand modelling of CEDRI is
split between dynamic physical modelling (to help



estimate the impact on specific building types from future
scenarios) and statistical modelling of metered demand
data (to understand diversity of current and future demand
at a higher resolution).

Dynamic building modelling was conducted with
EnergyPlus software, via DesignBuilder. This approach
was selected due to the need to generate transient thermal
building response and internal temperature profiles, as
conducted in otherresidential studies (Yoon, Baldick and
Novoselac, 2014; Huang and Wu, 2019). Although based
on purely theoretical/physical modelling, this enabled the
project to test specific retrofit approaches (e.g. building
fabric) that may impact the temperature profiles in a
positive sense, and therefore be demand-reducing
measures that could be communicated and discussed with
the householder.

In addition to the physical modelling, there was a need to
upscale the measured energy demand data to represent a
greater number of homes — and a desire to morph demand
to account for changing external factors such as climate
change. Therefore, a stochastic demand synthesising
approach  (specifically, ~STL-HMM-GP, described
elsewhere (Patidar, Tanner, et al., 2021)) was adopted that
integrates a ‘climate module’. The STL-HMM-GP
algorithm facilitates detangling of complex demand
profiles using a Seasonal Trend based on Loess (STL)
decomposition approach (Cleveland et al., 1990) and
simulates the resulting stochastic component of high
resolution demand using a Hidden-Markov Model
Generalised Pareto (HMM-GP). The modelling approach
can therefore be summarised in the following steps:

1. An STL decomposition algorithm is applied to
decompose the electricity demand series into
three components: i) Trend, ii) Seasonal and iii)
Residual (stochastic) variations

2. The trend component of electricity demand is
associated with the trend component of climate
variables (temperature, relative humidity, solar
radiation, wind direction, wind speed)througha
partial least square regression (Guebel and
Torres, 2013) to generate climate morphed
trends

3. The residual component is fitted to a HMM
model to simulate plausible profiles that match
characteristics of the observed series

4. Electricity demands are synthesised by
combining i) climate morphed trend of
electricity demand (generated in step 2); ii)
seasonal components (extracted from observed
demand in step 1); and iii) simulated random
components (generated using HMM in step 3).

5. Extreme values (95" percentile) in the
synthetic profiles are sampled from a GP
distribution of extreme values of the observed
profiles

6. A percentile-based bias correction is applied to
account for logarithmic transformation of the
original series

At the resolution desired (~minutely), Step 2 is crucial to
accounting for diversity when aggregating multiple
profiles together. This enables the tool to produce
individual household profiles and, from these,aggregated
profiles of multiple dwellings that could be linked to
different future demand scenarios.

Household choices and behaviour

As well as focussing on the physical buildings and energy
networks, it was essential for CEDRI to understand i)
household actions that might explain the demand
characteristics recorded and ii) how householders may
change energy behaviour in the future, and respond to
attempts to reduce and/or manage residential demand
(with a particular focus on cooling).

Current energy practices were captured using both
qualitative (observations, interviews) and quantitative
approaches (Osunmuyiwa ef al., 2020). Twenty in-depth
interviews were conducted with two different groups of
householders. Group A had ten participants in monitored
households. Group B had ten participants representing
non-monitored households within Auroville.
Interviewees exhibited diversity in appliance ownership,
nationality, age, gender, building type, and household
type (single or multigenerational). Interview questions
converged around (i) local energy networks (grid
challenges and adoption of solar PV); (i) building type
and its relations to cooling preferences; (iii) electricity use
and cooling consumption behaviour in relation to
individual and community values.

The interview data was used in designing the larger
questionnaire. The questionnaire covered broader topics
such as appliance ownership and usage, energy saving and
pro-environmental behaviours, barriers to energy efficient
behaviours, and preferences around Time of Use (ToU)
demand response. The questionnaire was sent to 2000
people within Auroville, with 6% fully completed.

To generate scenarios for future energy practices, two
types of co-production workshops were conducted
(Osunmuyiwa et al., 2021). The first co-production
workshop was with households who had either
participated in the interviews or questionnaire. Three
types of exercise shaped the workshop:

e Extracted information from the questionnaire
around ToU was presented alongside 30 year
climate analysis of Auroville

e Participants were introduced to a demand
management matrix with both technological and
behavioural changes (minor, incremental, and
disruptive shifts). They were asked to identify
where they and the community were and discuss
how energy practices will be altered based on
this change

e A series of Demand Response (DR) cooling
flexibility options were presented in lay terms
and, through a scenario-based exercise,
participants were tasked with creating a DR
cooling policy for the community



A second co-production workshop was conducted with
practitioners in Delhi. Twenty-five practitioners including
academics, representatives of local utilities, policy think
tanks, and regulatory actors were invited based on their
knowledge of and experience with India’s electricity
networks and the built environment. Practitioners were
asked to discuss current and future challenges around the
implementation of DR strategies at the building and
network level.

Integrating across model boundaries

It is not always possible, or desirable, to “hard-wire”
different assessment techniques. For example, barriers
between translating qualitative information (collected in
co-production exercises) into input for a quantitative
building model can make such direct integration tenuous.
However, CEDRI allows the different techniques to
influence each other by using common scenarios,
responding to the same case-study, and allowing for direct
communication where relevant and useful.

A diagrammatic representation of this integration is
shown in Figure 2. Rather than describing a genuine, top-
level energy system model, this structure allows for a
different selection of tools to be used for different
questions asked of community energy — and different
points of integration between model boundaries can be
seen for these different questions. For example, the
network model can use synthesised demand data from the
building modelling work, for both a baseline and future
scenario, to understand the impact of projected demand
changes on network performance. Cooling profiles
extracted from demand data can be linked to the real
activities (and cooling behaviours) reported in the
householder study (e.g. reasons for operating A/C in a
certain way). Choice of modelled demand reduction
measures, within a dynamic simulation environment, can
be tailored on feedback from a specific community to
increase likelihood of'those measures being accepted, and
their projected savings realised. Broadly these questions
can be categorised between those that might be posed by
the network, and those posed by the householder — the
latter requiring individual building assessment, the former
some form of aggregation atscale.
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Figure 2: Integration of modelling activities in CEDRI

Application of method for Auroville case-
study

Auroville is an intentional, and international, community
in Tamil-Nadu with a population of 50,000. Two blocks
of apartment buildings — “Citadines” and “Inspiration” —
were monitored by CEDRI, containing 34 and 14 flats
respectively (of which 21 and 9 units were chosen to be
metered). Table 1 summarises these metered dwellings.

Other information was also recorded, such as type of
lighting (noting a diverse mix of incandescent, CFL, LED
and T5 with Electronic Ballast), use ofelectric fans and/or
air conditioning (A/C), and other common household
appliances (such as refrigerators). Unusually, cooking in
Citadines was often via a community kitchen where most
of'the residents have their lunch. Cooking in other homes
was often with a gas stove. This therefore had a clear
impact on measured electricity demand, where cooking
(in homes with individual electric stoves) can be a
recognisable, and definable, period in the day.

The dwellings have single phase blink meters for
monitoring electricity consumption, operating at a
resolution of 16,000 blinks/kWh specification (0.06
Wh/blink) and three-phase meters with blink resolution of
800 blinks/kWh (1.25 Wh/blink). As the frequency of
recording relies on the level of demand for blink meters,
the monitored electricity consumption had irregular
timestamps and data-cleaning methods were used to
convert this to minutely resolution data, as further
elaborated elsewhere (Debnath et al., 2020). The
household electricity consumption data was collected for
November 2018-June 2019.

Table 1: Summary of Auroville metered properties

Flats No. of No. of Heating | Cooling
dwellings | occupants type type
Citadines 21 23 None Fans,
Inspiration 9 10 Geyser A/C

The CEDRI method was used with this case-study to
answer several research questions, a selection of which
are noted below.

Synthesising electricity demand

Using the synthesis technique identified earlier, Figure 3
shows an example of a synthesised profile for a dwelling
in Auroville, compared to an observed dataset. The
technique demonstrates that semi-stochastic demand
profiles can be synthesised from empirical datasets, and
mimic the behaviour (in this case, particularly cooling
behaviour) of real households in the original sample
(Patidar, Jenkins, et al.,2021). This then allows for multi-
building aggregation that accounts for diversity and can
be compared to substation-level demand profiles.
Furthermore, with correlation identified between demand
profile and other factors (e.g. external temperature,
household occupancy, number of cooling devices), the
aggregated demand profile can be morphed for a future
scenario where such factors may be different (e.g. climate
change, patterns of home-working, increase uptake in
mechanical cooling).
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Figure 3: (a) Observed and (b) synthesised Auroville
individual dwelling electricity demand profile

An example of this is shown in Figure 4, where
synthesised, aggregated demand data for 610 dwellings
has been altered to account for future, projected climate
parameters (using the previously reference algorithms).
Furthermore, this is still linked to a series of individual
demand profiles (making up thataggregation) that can be
used within the previously described networking
modelling to ensure suitable local network performance.
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Figure 4: Example of future-morphed (2040-60)
aggregated demand profile (N=610) compared to

baseline (2020)
Building fabric futureproofing
CEDRI’'s  dynamic building simulation approach

(informed by the monitored data) shows the potential to
reduce average daily indoor temperature and cooling
electricity consumption during summer by retrofitting
exterior walls and roof with insulating materials (Debnath
and Jenkins, 2022). These materials should be
implemented cautiously as the use of natural (and
mechanical) ventilation instead of A/Cs in highly
insulated buildings may increase the indoor temperature
significantly. The size and nature of the simulation study

was not intended for generalising community-scale
conclusions for cooling demand across India. Instead, the
study demonstrated a process where measured electricity
consumption data combined with simulation, and
contextual information of community households,canbe
used to enhance understanding of building insulation on
indoor temperature and aggregated cooling energy
demand. This was specifically considered for aresidential
community where A/C ownership was increasing,
informed by the interactions, surveys, and co-production
activities with the community itself.

Understanding local drivers of energy behaviour

Broad synthesis from CEDRI’s behavioural analysis
shows that current energy practices are driven by
environmental identity, values, and emerging ecological
realities (heat waves). While environmental values led to
technological shifts such as the purchase of energy-
efficient cooling appliances, subsequent patterns of use
were profoundly shaped by situational factors (building,
householders’ health status, children etc.).

This analysis also helped explain the lack of diverse
features in the measured demand profiles (such as in
Figure 3). A relative homogeneity of non-cooling activity
meant that the characteristics of electricity demand were
highly correlated with approaches to cooling and
summertime comfort.

Future scenario development

CEDRI’s co-production approach shows that households
have an appetite for radical technical innovations (e.g.,
demand response for cooling automation), especially if
consulted and energy planners involve them in the design
process. However, caution must be exercised as the
observed appetite for technical innovation prevailed in
areas with strong biospheric and altruistic values for the
environment. Other forms of values, cultures and norms
might be the prevailing factors in other local contexts. As
such, negotiations around cooling practices must be
considered — as automation will trigger new
configurations of practices. Furthermore, India needs a
blueprint of resources and toolkits on the range of
ancillary services householders will offer. Efforts should
be made to sensitise users on the requirements (capital and
resources ) of taking up such a role.

Additionally, the triggers for current cooling practices and
appliance purchasing (and therefore the modelling of
increased penetration of cooling devices across the wider
building stock) was complex (Osunmuyiwa et al., 2020).
A “perception” of temperature, informed by wider
discussions with (for example) medical practitioners, as
well as the actually recorded temperature, played a part in
i) a decision to purchase a cooling device and ii) how that
device would be operated. Quantitative building models
are not necessarily designed to translate such current and
future actions into an aggregated cooling model of
multiple homes.

Information required by practitioners

The second co-production workshop with practitioners,
noted above, used Auroville as a case-study but brought



in participants working more generally across India. The
multidisciplinary nature of the project meant that
technical issues relating to the future grid provision could
beused to frame this qualitative exercise (Osunmuyiwa et
al., 2021). The intention was to understand the value of
the tools and wider analysis being conducted by CEDRI.
Specifically, practitioners:

1. Identified challenges around the implementation
of energy demand flexibility policies for
residential buildings in India

2. Unpacked core issues currently affecting India’s
local electricity networks and discussed potential
changes in the next few decades, and how to
address them

3. Suggested an increasing role for householders as
prosumers and de-facto suppliers of ancillary
services in India

This discussion demonstrated the difficult gap between
future scenario mapping and actually delivering and
designing a working energy system; the former allows a
contributor to be speculative and discursive across
multiple futures, whereas the latter requires definitive and
actionable information. Within a rapidly changing
landscape (as is observed in India), this places a great
burden, and risk, on the assumptions used.

Further work

Inevitably, the work of CEDRI identified outstanding
questions that could not be fully addressed by the project.
The conversations had with practitioners noted an
information gap for specific applications of demand
response, and the communication of this to end-users.

Additionally, more tools/information are required to
support policymakers and planners so that they can reflect
values and norms when designing interventions to support
a low-carbon energy transition. But these tools need to
also be sensitive to behavioural and cultural values of the
communities being studied —and quantitative tools are not
always designed to do this. CEDRI adds to this toolkit,
but in a relatively technology-agnostic way. Addressing
the consequences oftargeted technology adoption would
be of great value.

Finally, more work is required on the technical (and/or
statistical) limitations to extrapolating bottom-up
modelling of the type described here. Likewise, there is
value to further exploring potential bridging between this
type of modelling and traditional, top-down energy
system models. Doing so in a user-focussed way could
provide more consistent recommendations that have a
grounding in nationalenergy policy, but are able to reflect
specific issues facing discrete regions and communities.

Conclusion

A summary of findings from a multidisciplinary approach
to community energy assessment in India has been
presented. The work demonstrates the value of
understanding buildings, energy networks, and the people
using those buildings — but recognising, froma modelling
perspective, where these different assessments can
interact with each other to answer specific questions. The

process of tailoring the models to a specific area of India
demonstrates modelling  functions that require
development with local challenges in mind (e.g. available
data, areas of energy use thatare more important), whilst
also noting techniques that have the potential for
transferability to very different geographic areas of study.

The work of CEDRI notes in particular that:

e There is a need to match demand reduction
strategies to specific communities with an
understanding of future change in those
communities

e Synthesising and upscaling demand profiles of
buildings can help characterise these changes
within nodal electricity network models and,
therefore, the impact on local energy systems

e Purchasing and energy behaviours ofhouseholds
are crucial to the success of demand-reduction
strategies — and care should be taken in over-
generalising the extent of these behaviours to
other communities

e Local behavioural and cultural aspects ofenergy
usecan (and should)be reflected in quantitative
energy modelling, butthis is difficult to achieve
without direct engagement with those
communities. Examples ofthis engagement have
been demonstrated in this paper.
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