
Prospects in probability

Amanda Turner
Department of Mathematics and Statistics
Lancaster University

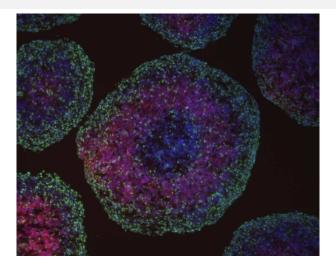
What is research in probability about?

- Probability provides a language for describing situations in which uncertainty is present.
- One of the main aims of a probabilist is to answer the question:
 - "What does a typical X look like?"
 - X can be "epidemic", "queue", "investment", "social network", "ecosystem",
 - X can also be "function", "curve", "surface", "permutation", "graph", ..., [insert favourite mathematical object here].

Why choose to do research in probability?

- Uncertainty is all around us so advancing our understanding of probability is undeniably useful.
- There is also very rich potential for research at the interface of probability with many other areas of mathematics and applications.
- Probability comes in two distinctive flavours.
 - In discrete probability, techniques are predominantly combinatorial.
 - In continuous probability, techniques are predominantly analytic.
 - Limit theorems connect discrete and continuous probability.

Squamulose lichen



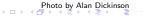
Crustose lichen

Cancer tumor slices

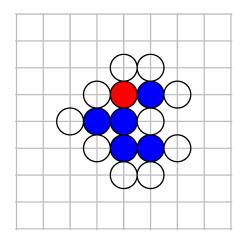
Penicillin mould

Gift by Sir Alexander Fleming to Edinburgh University Library, Scotland

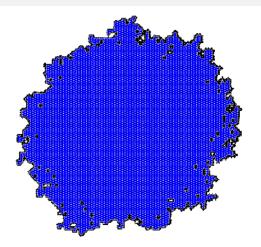
Copper aggregate formed from a copper sulphate solution in an electrode position cell



Sandstone dendrite mineral deposit



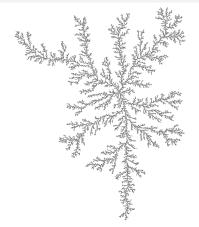
Electrical "tattoo" on survivor of lightning strike



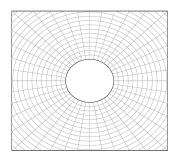
From "Lichtenberg Figures Due to a Lightning Strike" by Yves Domart, MD, and Emmanuel Garet, MD

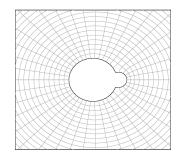
Lattice models for random growth

Eden model for biological growth with 1,500 particles

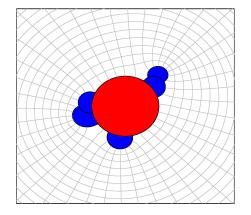


Diffusion-limited aggregation (DLA) model with 2,000 particles

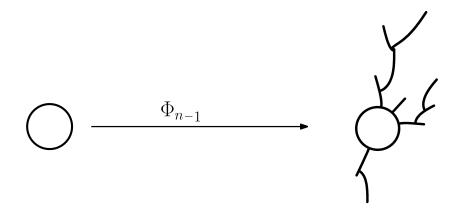


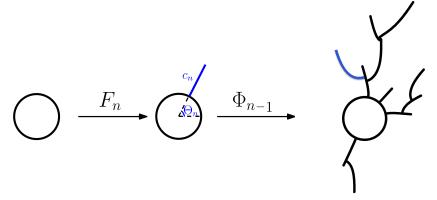


Conformal mappings and clusters

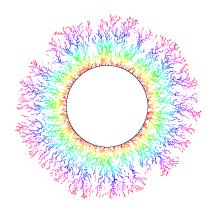

- Riemann Mapping Theorem: Let $K \subset \mathbb{C}$ be any connected compact subset of \mathbb{C} larger than a single point and such that $\mathbb{C} \setminus K$ is connected. Then there exists a unique conformal mapping (i.e. preserves angles) from the exterior of the unit disk to $\mathbb{C} \setminus K$ that fixes infinity.
- Clusters can be uniquely represented as conformal mappings.
- Questions about geometric objects turn into questions in complex analysis.

Conformal mapping for a single particle




Conformal mapping for a cluster

Cluster formed by iteratively composing mappings


Cluster formed by iteratively composing mappings

$$\Phi_n = \Phi_{n-1} \circ F_n = F_1 \circ F_2 \circ \cdots \circ F_n$$

Conformal mapping model for an Eden cluster with 8,000 particles

Conformal mapping model for a DLA cluster with 8,000 particles

Models for random growth

- Although random growth processes are completely unpredictable at the level of individual particles, large clusters often exhibit predictable or 'universal' behaviour.
- A mathematical description enables us to perform simulations and calculations that help us to establish the nature of the universal behaviour and to answer fundamental questions about the natural processes.
- By combining ideas from complex analysis and probability, understanding random growth becomes understanding random compositions of functions.

Research prospects in random growth

- Compositions of conformal maps provide a mathematical framework to describe random growth but are still very hard to analyse mathematically.
- Progress can be made by studying simplified models.
- Many good PhD-level problems involve using simplified models to identify possible mechanisms behind the universal behaviours observed in random growth.

PhD opportunities in probability

- Centres for Doctoral Training (often application focussed):
 - Bath Statistical Applied Mathematics at Bath (SAMBa).
 - Bristol Computational Statistics and Data Science (COMPASS).
 - Edinburgh Mathematical Modelling, Analysis and Computation (MAC-MIGS).
 - Imperial and Oxford Mathematics of Random Systems: Analysis, Modelling and Simulation.
 - Lancaster Statistics and Operational Research in Partnership with Industry (STOR-i).
 - Warwick Mathematics for Real-World Systems (MathSys).
- Universities with researchers in probability (not exhaustive):
 - Bath, Bristol, Cambridge, Durham, Edinburgh, Heriot-Watt, Imperial, Kings, Lancaster, Leeds, Liverpool, LSE, Manchester, Nottingham, Oxford, Queen Mary, Reading, Sheffield, Swansea, Surrey, UCL, Warwick, York.