PhD Research in Numerical Analysis

Catherine E. Powell

University of Manchester

c.powell@manchester.ac.uk

September 11, 2020

Introduction

NA is concerned with the **development** and **analysis** of algorithms for **approximating** solutions to problems, such as

- \triangleright Integration: $\int_D f(\mathbf{x}) d\mathbf{x}$,
- \triangleright Interpolation / polynomial approximation: $p(\mathbf{x}) \approx f(\mathbf{x})$
- \triangleright ODEs: $\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}(t))$
- \triangleright PDEs: $-\nabla^2 u(\mathbf{x}) = f(\mathbf{x})$
- \triangleright Linear systems: $A\mathbf{v} = \mathbf{b}$
- \triangleright Optimisation: $\min_{\mathbf{x} \in S} f(\mathbf{x})$
- > . . .

Introduction

NA is concerned with the **development** and **analysis** of algorithms for **approximating** solutions to problems, such as

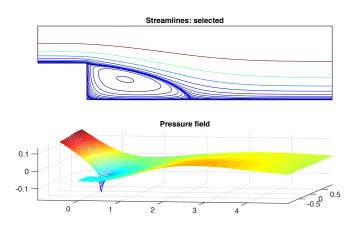
- \triangleright Integration: $\int_D f(\mathbf{x}) d\mathbf{x}$,
- \triangleright Interpolation / polynomial approximation: $p(\mathbf{x}) \approx f(\mathbf{x})$
- \triangleright ODEs: $\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}(t))$
- \triangleright PDEs: $-\nabla^2 u(\mathbf{x}) = f(\mathbf{x})$
- \triangleright Linear systems: $A\mathbf{v} = \mathbf{b}$
- \triangleright Optimisation: $\min_{\mathbf{x} \in S} f(\mathbf{x})$
- > . . .

Modern research is driven by: **complex real-world applications**, evolving computer architectures and **increasing computing power**.

PDE Example: Navier-Stokes Equations

$$-\,\nu\nabla^2\mathbf{u}+\mathbf{u}\cdot\nabla\mathbf{u}+\nabla\boldsymbol{p}\quad=\quad\mathbf{f},\qquad\nabla\cdot\mathbf{u}=0.$$

We can approximate \mathbf{u} (the velocity) and p (the fluid pressure) using e.g. finite element methods (FEMs).



$$-\nabla^2 u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in D.$$

$$-\nabla^2 u(\mathbf{x}) = f(\mathbf{x}), \qquad \mathbf{x} \in D.$$

 \triangleright Prove whether a solution u exists and is unique.

$$-\nabla^2 u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in D.$$

- \triangleright Prove whether a solution u exists and is unique.
- \triangleright Prove a **regularity** result for u. (How smooth is u?)

$$-\nabla^2 u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in D.$$

- \triangleright Prove whether a solution u exists and is unique.
- \triangleright Prove a **regularity** result for u. (How smooth is u?)
- \triangleright Design a **computationally efficient** method for computing an approximation u_n which is **stable** and **convergent**

$$||u-u_n|| \to 0$$
, as $n \to \infty$,

(and respects the underlying physics in the case of PDEs).

$$-\nabla^2 u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in D.$$

- \triangleright Prove whether a solution u exists and is unique.
- \triangleright Prove a **regularity** result for u. (How smooth is u?)
- \triangleright Design a **computationally efficient** method for computing an approximation u_n which is **stable** and **convergent**

$$||u-u_n|| \to 0$$
, as $n \to \infty$,

(and respects the underlying physics in the case of PDEs).

 \triangleright Prove 'a priori' bounds for $e = ||u - u_n||$ and rates of convergence.

Numerical Analysis PhDs

$$-\nabla^2 u(\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in D.$$

- \triangleright Prove whether a solution u exists and is unique.
- \triangleright Prove a **regularity** result for u. (How smooth is u?)
- \triangleright Design a **computationally efficient** method for computing an approximation u_n which is **stable** and **convergent**

$$||u-u_n|| \to 0$$
, as $n \to \infty$,

(and respects the underlying physics in the case of PDEs).

- \triangleright Prove 'a priori' bounds for $e = ||u u_n||$ and rates of convergence.
- Design a method to estimate e 'a posteriori'.

Numerical Analysis PhDs

Modern numerical algorithms are usually **adaptive**.

Modern numerical algorithms are usually adaptive.

Pick a tolerance, TOL.

Modern numerical algorithms are usually adaptive.

- Pick a tolerance, TOL.
- \triangleright Compute a **cheap** approximation u_1 (for a small value of n)

Modern numerical algorithms are usually adaptive.

- ▷ Pick a tolerance, TOL.
- \triangleright Compute a **cheap** approximation u_1 (for a small value of n)

$$\eta \approx \|u - u_1\|.$$

Modern numerical algorithms are usually adaptive.

- ▷ Pick a tolerance, TOL.
- \triangleright Compute a **cheap** approximation u_1 (for a small value of n)
- Compute an estimate of the error

$$\eta \approx \|u - u_1\|.$$

ightharpoonup If $\eta \leq TOL$, then STOP.

Modern numerical algorithms are usually adaptive.

- ▷ Pick a tolerance, TOL.
- \triangleright Compute a **cheap** approximation u_1 (for a small value of n)
- Compute an estimate of the error

$$\eta \approx \|u - u_1\|.$$

▷ If $\eta \le TOL$, then STOP. Otherwise, compute a **more accurate** approximation u_2 (with a higher value of n), . . .

Modern numerical algorithms are usually adaptive.

- ▷ Pick a tolerance, TOL.
- \triangleright Compute a **cheap** approximation u_1 (for a small value of n)
- Compute an estimate of the error

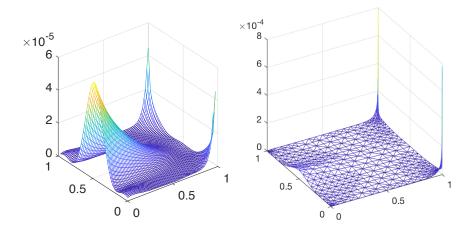
$$\eta \approx \|u - u_1\|.$$

- ▷ If $\eta \leq TOL$, then STOP. Otherwise, compute a **more accurate** approximation u_2 (with a higher value of n), . . .
- \triangleright Compute a **sequence** of approximations u_1, u_2, \ldots until

$$\eta \leq TOL$$
.

Numerical Analysis PhDs

Non-adaptive vs. Adaptive FEM Approximation



*Disclaimer: This list is by no means complete ...

Numerical Solution of PDEs: approximation theory, applicationspecific methods for problems in engineering, biology etc, wave scattering, development & analysis of FEMs, spectral methods, physics-preserving methods, adaptivity, . . .

*Disclaimer: This list is by no means complete ...

- Numerical Solution of PDEs: approximation theory, applicationspecific methods for problems in engineering, biology etc, wave scattering, development & analysis of FEMs, spectral methods, physics-preserving methods, adaptivity, . . .
- Numerical Linear Algebra: iterative methods for solving linear systems, preconditioning, matrix equations, eigenvalue problems, mixed precision algorithms, . . .

- *Disclaimer: This list is by no means complete ...
 - Numerical Solution of PDEs: approximation theory, applicationspecific methods for problems in engineering, biology etc, wave scattering, development & analysis of FEMs, spectral methods, physics-preserving methods, adaptivity, . . .
 - Numerical Linear Algebra: iterative methods for solving linear systems, preconditioning, matrix equations, eigenvalue problems, mixed precision algorithms, . . .
 - ▶ Uncertainty Quantification (UQ): stochastic ODEs & PDEs, Bayesian inverse problems, multilevel and adaptive methods, ...

- *Disclaimer: This list is by no means complete ...
 - Numerical Solution of PDEs: approximation theory, applicationspecific methods for problems in engineering, biology etc, wave scattering, development & analysis of FEMs, spectral methods, physics-preserving methods, adaptivity, . . .
 - Numerical Linear Algebra: iterative methods for solving linear systems, preconditioning, matrix equations, eigenvalue problems, mixed precision algorithms, . . .
 - ▶ Uncertainty Quantification (UQ): stochastic ODEs & PDEs, Bayesian inverse problems, multilevel and adaptive methods, ...
 - ▶ Optimisation: Fundamental theory, inverse problems, imaging applications and machine learning, compressed sensing, . . .

Numerical Analysis PhDs

Project 1: Methodological (PDEs)

The Challenge: Derive **computationally efficient** methods to solve a class of elliptic PDEs with uncertain inputs, that converges at an **optimal rate**.

Project 1: Methodological (PDEs)

The Challenge: Derive **computationally efficient** methods to solve a class of elliptic PDEs with uncertain inputs, that converges at an **optimal rate**.

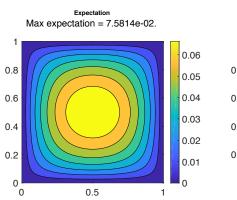
$$-\nabla \cdot \left(\underbrace{a(\mathbf{x},\mathbf{y})}_{\text{coefficient}} \nabla u(\mathbf{x},\mathbf{y})\right) = f(\mathbf{x})$$

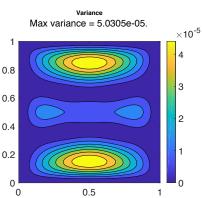
where the coefficient is a parameter-dependent function

$$a(\mathbf{x}, \mathbf{y}) = a_0(\mathbf{x}) + \sum_{m=1}^{\infty} a_m(\mathbf{x}) \underbrace{y_m}_{\text{paramete}}$$

Numerical Results: Test Problem

Estimated **mean** (left) and **variance** (right) of u(x, y)

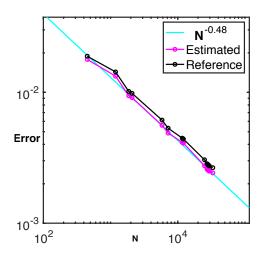




Estimated Error & Convergence Rate

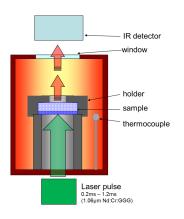
N:= dimension of approximation space.

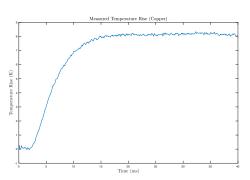
Optimal convergence rate: $N^{-1/2}$ (for this test problem).



Project 2: Application-Focused (iCASE PhD with NPL)

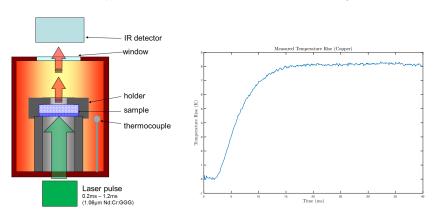
The Challenge: Approximate thermal conductivity λ of materials using data from laser flash experiments & estimate associated uncertainty.





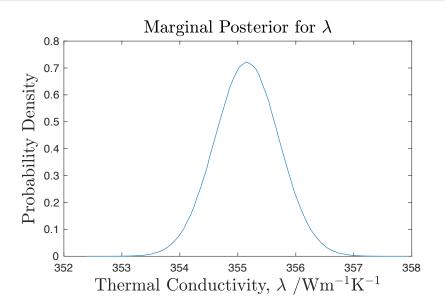
Project 2: Application-Focused (iCASE PhD with NPL)

The Challenge: Approximate thermal conductivity λ of materials using data from laser flash experiments & estimate associated uncertainty.

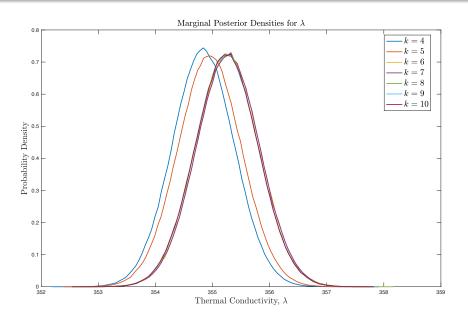


Approach: Formulate as a **Bayesian inverse problem** and approximate the conditional pdf of λ (given the data).

Numerical Results: Estimated PDFs (Copper)



Convergence (as polynomial degree $k \to \infty$)



Project 3: Methodological (Linear Algebra)

Challenge: Design adaptive iterative methods for solving massive linear systems $A\mathbf{v} = \mathbf{b}$ where

$$A = \underbrace{G_1}_{m \times m} \otimes \underbrace{K_1}_{n \times n} + G_1 \otimes K_2 + \ldots + G_M \otimes K_M,$$

and $\otimes :=$ the matrix 'Kronecker product'.

Project 3: Methodological (Linear Algebra)

Challenge: Design adaptive iterative methods for solving massive linear systems $A\mathbf{v} = \mathbf{b}$ where

$$A = \underbrace{G_1}_{m \times m} \otimes \underbrace{K_1}_{n \times n} + G_1 \otimes K_2 + \ldots + G_M \otimes K_M,$$

and $\otimes :=$ the matrix 'Kronecker product'.

Equivalently, approximate the matrix V satisfying the matrix equation

$$\textit{K}_{1}\textit{VG}_{1}^{\top} + \textit{K}_{2}\textit{VG}_{2}^{\top} + \ldots + \textit{K}_{\textit{M}}\textit{VG}_{\textit{M}}^{\top} = \textit{B}$$

where $\mathbf{v} = \text{vec}(V)$ and $\mathbf{b} = \text{vec}(B)$.

Project 3: Methodological (Linear Algebra)

Challenge: Design adaptive iterative methods for solving massive linear systems $A\mathbf{v} = \mathbf{b}$ where

$$A = \underbrace{G_1}_{m \times m} \otimes \underbrace{K_1}_{n \times n} + G_1 \otimes K_2 + \ldots + G_M \otimes K_M,$$

and $\otimes :=$ the matrix 'Kronecker product'.

Equivalently, approximate the matrix V satisfying the matrix equation

$$\textit{K}_{1}\textit{VG}_{1}^{\top} + \textit{K}_{2}\textit{VG}_{2}^{\top} + \ldots + \textit{K}_{\textit{M}}\textit{VG}_{\textit{M}}^{\top} = \textit{B}$$

where $\mathbf{v} = \text{vec}(V)$ and $\mathbf{b} = \text{vec}(B)$.

> **Applications:** Dynamical systems, high-dimensional & stochastic PDEs.

Things to think about before applying

- > Try and narrow down the area (in NA) you want to work in
- Do you want to prove theorems, do computations, or both?
- Do you want to do core methodological research, or something application-driven?
- > University webpages can be hard to navigate look at research pages.
- ▶ Look beyond CDTs not every institution has one.