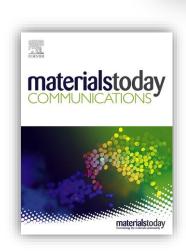


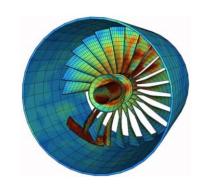
Microscale mechanics in engineering: Big impact from small length scales

Dr Alexander Lunt



Self introduction

- ❖ PhD + Lectureship at Christ Church, Oxford 2008-2016
- Senior fellow at CERN, 2016-2019
- Started at Bath in January 2019
- 60 peer review articles (8 since starting at Bath)
- Editor for Materials Today Communications
 - & Journal of Materials and Design



Micromechanics

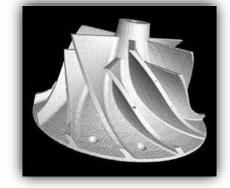
- Materials engineer structural mechanics
- Mechanics forces & displacements
- Why microscale?
 - Advanced materials (composites, additively manufactured)
 - Failure & defects (voids, inclusions, precipitates)
 - Microscale structures (thin films, lithography)

Simulation

Characterisation

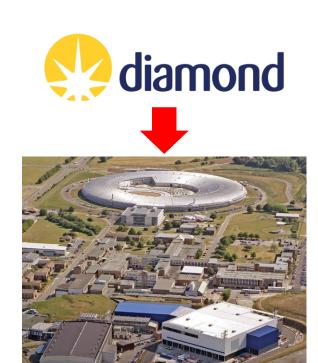
Manufacture

Final product


Emerging field – availability of new techniques + equipment

Experimental methods

- Experimentalist
- Work is 'query' driven toolbox
- Applicable to many engineering fields
- Collaborative research (industry, academics & research institutes)
- Two main analysis types:
 - Non-destructive (X-ray diffraction & neutrons)
 - Microscopy & microscale actuation (nanoindentation)

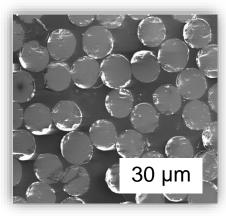


Non-destructive methods

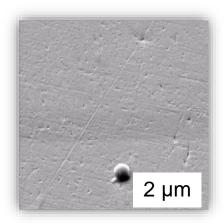
- Synchrotron X-ray and neutron facilities
- High energy beam of photons/particles
- Focus onto sample observe interaction
- Diffraction, fluorescence, tomography, ...
- Competitive application process (£21k+ per day)
- 5 experiments (21 days) awarded so far

Microscopy and microscale actuation

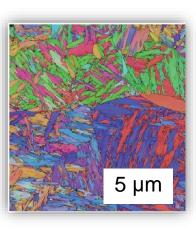
Electron microscopy - SEM, TEM

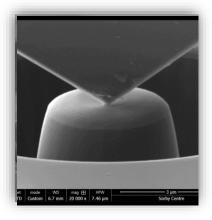

- Imaging
- Interaction EBSD, EDS, spectrometry

Focused ion beam milling


- Residual stress analysis
- Microscale machining test geometries

Nanoindentation


- Force application and measurement
- Displacement and strain characterisation


Carbon fiber

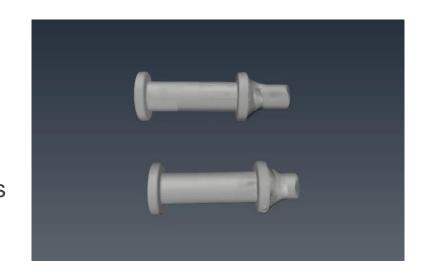
Residual stress analysis

Grain orientation

Fracture toughness

CERN/CMS affiliation

- Faculty agreement signed in Feb 2019
- Diplomatic visit in Sept (VC, Dean, HoDs)
- **❖** Team leader role
 - Engaging with management find opportunities for Bath
 - Establish collaborative projects
 - Undergraduate (GBDP, FYP and placements) and PhDs



My research with CMS

- **❖** Accelerator design extreme engineering requirements
 - Microscale precision required significant stress, thermal, radiation loads
 - Microscale mechanics crucial for many applications

- PhD student started in October
- New pipe and connection design high pressure, low temperature CO₂
- Microscopy, tomography, surface characterisation, residual stress analysis
- Pressure test rig design and production
- PhD advert CFD of boiling CO₂ inside pipes

Summary

- Exciting time enhance existing Bath research through collaboration
- Bring in new industrial & research partners (CMS)
- New equipment arriving soon
 - Keyence 3D optical microscope, nanoindenter, AFM, FIB?
- Enhance micromechanics capabilities at Bath
- Lots of new projects underway
- Advertising for many PhD studentships!

Thank you! Any questions?