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Motivation
=

Industrial De-carbonization Target

B Drying
Evaporation

Non-thermal
separations

O Switch to 20 TWh of low-carbon fuels (UK)
Q Capture 3 million tons of CO: (UK)

Industrial Decarbonisation Strategy, 2021
P. Lively et al. Nature 532, 435-437, 2016

Energy-Efficient Separation Process

Separation Energy consumption:
6 million tonnes oil/year for UK

Pure Chemicals

Porous interface - Membrane

Membrane is promising technology to .......

O Save 90% separation energy
O Cut down Carbon capture cost < 20$/ton

Energy Consumption in the UK (ECUK) 2023



My Research focus — one-atom-thick membranes

Properties

v' One-atom-thick layer (e.g. graphene)

Feed

[ v High carrier (electron) mobility
Permeate o ® o @ v Unique optical property
Transform one-atom-thick films as high-performance membranes.
O Shortest mass transport channel O Unique electronic/optic property
LR ’L ‘z,]
l_ (1]
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High performance membrane Photo-enhanced mass transport

L. Wang et al. Nature Nanotech 12, 509-522 (2017) M. lozada-hidalgo et al. Nature Nanotech 2018, 13, 300-303
L. F. Villalobos, D.J. Babu, K-J Hsu, et al Acc. Mater. Res., 3, 1073-87 (2022) M. Graf et al. Joule 2019, 3, 1549-1564



Challenges to incorporate sub-nm nanopores

High resolution nanopore High density nanopores

CO,(3.3A) N,(3.6A)

F
= -~
o T
.
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u When Pore density reach 102 cm-2to 10'3 cm2
1 A=1010
0m Expected 104 to 10° GPU gas permeance

=~ 10 to 100 times of commercial membranes

Yuan et al. ACS Nano 2017, 11, 7974-7987



Our approaches
-

Nanopore Mathematical Energy-efficient
engineering modeling Membrane

1. In-situ probe nanopore etching kinetics

Ozone etching

Functionalized

anopore
Graphene formation

S. Huang, et al. Advanced Materials, 2022, 34, 2206627 P”Stlne Graphene



1. In-situ probe nanopore etching kinetics
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3D STM to illustrate the functional cluster formation 0 0g— P————
Time (s)

Cluster i

O-clusters in graphene lattice:
1 h exposure to 10 % O, at 43 °C

O-cluster to pore:
80-keV beam with a dose rate of
15700 e s'A2

S. Huang, et al. Advanced Materials, 2022, 34, 2206627 AC-HRTEM to probe the nanopore opening 6

S. Huang, et al. Science Advances, 2021, 7(9): eabf0116.



2. Mathematical modelling to guide nanopore formation
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S. Huang et al. Science Advances, 2021, 7(9): eabf0116



2. Mathematical modelling to guide nanopore formation
- =

Based on mathematical modelling, optimized experiment condition was chosen to form the following nanopores

P-6; (x8) P-6ii (x3) = P-7i (x4) P-8i (x3) P-8ij (x3)

P-11; (x5) P-11ii (x2)

EP13;(x2) - WP14i(x2)

Sessiecs
3.: ]
12e%e%e %!
2a9a95%!

Realize uniform sub-nanometer pore (6 — 20 missing carbon atoms) with high density 1.6 x 1012 cm-2

Some of structure observed in experimentally for the first time!

S. Huang, et al. Advanced Materials, 2022, 34, 2206627 8
S. Huang, et al. Science Advances, 2021, 7(9): eabf0116.



3. The 15t reported one-atom-thick membrane for gas separation

Permeance (GPU)

High permeance membrane for CO,/N,

Within 1% porosity

10 times higher permeance than commercial membrane

S. Huang, et al. Advanced Materials, 2022, 34, 2206627
S. Huang, et al. Science Advances, 2021, 7(9): eabf0116.
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Can we save more energx?

Photo-enhanced graphene membrane

Mass transport ~ Electron structure ~ Photon effect

ULTRAVIOLET VISIBLE LIGHT
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S.Huang et al. Nature Commun 14, 6932 (2023)
M. lozada-hidalgo et al. Nature Nanotech 13, 300-303 (2018)

Johannsen JC et al, Nano Letters 15 326 (2015)
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Summary

Engineering one-atom-thick graphene as a high-efficiency mass transport interface

Nano Engineering to high performance separation Unique photo-enhanced phenomenon
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