

Human made climate change is:

- Controversial
- Important
- A meeting place of scientists, mathematicians and policy makers

Five 'official' indicators of climate change IPCC

1. Increasing temperatures

2005 was the hottest year ever recorded!

But note the last ten years

2. The Melting Arctic

Every year we lose Arctic ice the size of Scotland!

Nasa's conclusion

Arctic sea ice has become thinner by around 43% over the last 25 years

Also Greenland land ice is melting fast

... and this trend is continuing

But ... from a New Zealand perspective

Antarctic sea ice is actually increasing!

Although land ice is decreasing

3. Changes in rainfall patterns (UK)

2000: Wettest year ever, 2012 second wettest

Top five wettest years in the UK		
1	2000	1337.3 mm
2	2012	1330.7 mm
3	1954	1309.1 mm
4	2008	1295.0 mm
5	2002	1283.7 mm

4. Sea Level Rise

Huge political consequences!

5. Increase in Atmospheric Carbon Dioxide

There is a connection with rising temperatures

Not everyone agrees!

"This is nonsense....there has been no statistically significant global warming for at least a decade"."

Watts up with that

And maybe it's all a big conspiracy!

ClimateGate

Why is climate science so hard?

It is difficult to predict anything, especially about the future! *Niels Bohr*

Some reasons for the uncertainty

Statistical variation in dodgy data

Chaos

Complexity of the system

Distinguishing between natural and human made variation

Example: How much Arctic Sea Ice Is There?

NASA: National Snow and Ice Data Center NSIDC

What happens next?

Year

Best fit straight line (statistics)

Future prediction???

Chaos theory tells us that there is ...

A limit to our scientific understanding of the future

Motion can be Chaotic and unpredictable

Even if we understand something we can't always predict it with certainty!!!!!

3. But can we really tell the future from the past?

Surely climate has been changing a lot over the past Isn't what we see now just part of that natural change?

What happened in the last half a million years?

Appearance of large temperature increases in a short time intervals, gradual cooling over 100kyr, with smaller oscillations in the cooler phases.

External Solar Input S(t) seems to be partly responsible: Milankovitch cycles: What happens next?

Climate Centres try to work this out

Take laws of physics

Motion

Heat

Turn them into (partial differential) equations

Solve these on a supercomputer to try to predict the climate

What makes up the climate?

Air Pressure p

Air Velocity u

Air/Ocean Temperature T

Air density

Moisture

Same for the oceans + ice + salt

Solar radiation S

Earth's rotation f

Gravity

Mountains, vegetation, ice, CO2, ...

Data: Sources of observation

Basic equations were derived by Euler and describe the weather

$$\begin{split} &\frac{Du}{Dt} + 2f \times u + \frac{1}{\rho} \nabla p + g = v \nabla^2 u, \\ &\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0, \\ &C \frac{DT}{Dt} - \frac{RT}{\rho} \frac{D\rho}{Dt} = \kappa_h \nabla^2 T + S_h + LP, \\ &\frac{Dq}{Dt} = \kappa_q \nabla^2 q + S_q - P, \\ &p = \rho RT. \end{split}$$

Motion

Density

Temperature

Moisture

Pressure

For climate add in ice, CO2, ocean currents, ...

Climate models are constantly improving to cope with complexity

Tested by comparing with the past data

But .. Only one data set!!

Whole range of models from simple to complex

Let's see if we can forecast an aspect of the climate with a simple climate model using energy balance

Earth's mean temperature: T

(1-a)S

a Albedo: How well the earth reflects the Sun's rays

Heat radiated away $\longrightarrow eST^4$

e emissivity: How much energy is radiated into space

Balance these to give a steady state

$$eST^4 = (1-a)S$$

If we know e, S, a, S we can work out T!!!!

Currently

Emissivity e = 0.605,

Boltzmann $S = 5.67 \cdot 10^{-8}$

Albedo a = 0.31,

Solar heating $S = 342 \text{ W/metre}^2$

Work out T from the heat balance equation

$$eST^4 = (1-a)S \longrightarrow T = \sqrt{\sqrt{(1-a)S/eS}}$$

The greenhouse effect

The greenhouse effect

If CO2 increases

Then e decreases

$$T = \sqrt{\sqrt{(1-a)S/eS}}$$

Formula tells us that T increases!!

Level of Carbon Dioxide (ppm)	Emissivity e _{CO2}
200	0.194
400	0.14
600	0.108
800	0.085

Now used to predict the future:

gradual rise in temperature

Between a 2 and 5 degree increase by 2100

North-South Differences in rainfall predictions

But .. Things could change more rapidly

As T increases the darkness d deceases

Leads to a feedback loop

This means that future temperatures may be even higher!

TIPPING POINT??

Improve the model by linking darkness to temperature

Simplest model for (1-a)(T) is a rapidly varying piecewise continuous or discontinuous model.

Eg. http://climatephys.org/2012/06/03/ice-albedo/

Multiple states observed, consistent with the observed past climates

Small changes lead to large effects

Potential Tipping Points In The Climate:

What many people are worried about!

So .. Are we all doomed?

Not necessarily!!

Practical ways to save the planet

Most of the energy we generate we simply throw away!

Can we use some of this instead?

and run the world from a cup of coffee

Halve the number of power stations

Conclusion
$$T = \sqrt{(1-a)S/eS}$$

What should a mathematician do about climate change?

- Think of ways to use less energy
- Think of better ways to produce energy
- Be aware of what is happening to our planet
- Always use your mathematical judgment when listening to what the papers say!

Hockey stick!

Temperature and CO2 and Ice volume in synchronisation!

Some different views

90% of scientists agree: the earth is warming and man made CO2 is responsible.

VS

Jan 27th 2012

16 Scientists in the Wall St. Journal say

'No need to panic about global warning'

