

 1

More importantly, the use of HPC allowed
Paul to extend the numerics to later times,
finding that it is possible to accurately com-
pute expectation values up to the point at
which they appear equilibrated experimen-
tally.

References
1. P. Secular, arXiv:2401.05301 (2024) https://

doi.org/10.48550/arXiv.2401.05301.
2. S. Trotzky, et al. Nat. Phys. 8, 325 (2012)

https://www.nature.com/articles/nphys2232.
3. Ludwig-Maximilians-Universität München,

Theoretical Nanophysics, https://
www.theorie.physik.uni-muenchen.de/
lsschollwoeck/.

4. M. Urbanek & P. Soldán, Comput. Phys. Com-
mun. 199, 170 (2016) https://doi.org/10.1016/
j.cpc.2015.10.016.

5. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004)
https://doi.org/10.1103/PhysRevLett.93.040502.

6. C. Goodyer, Technical Report (NAG Ltd,
2013) http://www.hector.ac.uk/cse/distributedcse/
reports/UniTNT/.

7. J. Eisert, IBM Research THINKQ Conference
on “Approximate quantum computing: from
advantage to applications” (2017) https://
www.youtube.com/watch?v=m0MOIgn11QA.

code is based on Ref. [6], which uses the
Message Passing Interface (MPI). Figure 1
shows the comparison of the simulation
results with the experimental data.

 For this problem, a weak scaling analysis
was possible since different simulations
involved differing numbers of particles N,
where is an N odd integer. The effective
system size is roughly equal to 2N, so one
would expect the computation time to
grow approximately linearly with N. For N
< 11, parallelisation was found to be un-
necessary, so these simulations were car-
ried out sequentially on a single compute
node. For larger systems, Paul used p
compute nodes, where p = (N-7)/2. For N
between 19 and 39 (corresponding to 6 ≤
p ≤ 16), respectable weak scaling was
found as shown in figure 2, with the wall
times constant to within a few percent. All
simulations were carried out on Balena’s

Dell PowerEdge
C8220 nodes, com-
prising 64 GB of DDR3
SDRAM and two Intel
E5-2650 v2 processors
(20 MB cache, 2.60
GHz base frequency),
giving a total of 16
cores per node. These

cores provided an additional, lower level
of shared-memory parallelisation for linear
algebra operations via the Intel Math Ker-
nel Library, although the multithreading
efficiency was relatively poor.

 In contrast to the numerics in Ref. [2],
which reportedly took about five weeks of
wall time per simulation [7], Paul’s parallel
calculations required less than 50 hours.

RESEARCH

COMPUTING

NEWSLETTER

M A Y 2 0 2 4 I S S U E 4

HPCBYTES
Verifying the Results of a Dynamical Quantum

Simulator: Using HPC to Explore the Relaxation

to Equilibrium of a One -Dimensional Bose Gas

In This Edition
 2 Pages

• CASE STUDY: Using HPC
to Verify an Experimental
Quantum Simulator

• TECHNICAL GUIDE: Running
Interactive Jupyter Note-
book from Your Local Ma-
chines on Nimbus

• HPC News and Updates

• Tip of the Month

S
imulating quantum many-body sys-
tems numerically is a difficult prob-
lem in general since quantum states

are described by multidimensional arrays
of numbers (tensors) that scale exponen-
tially with system size. Because of this,
physicists have started turning to experi-
mental quantum simulators and quantum
computers. These devices have the poten-
tial to revolutionise our knowledge of com-
plex quantum systems but are still in their
infancy. It is therefore important to verify
their accuracy and to test claims of
“quantum advantage”.

 In a recent pre-print [1], Paul revisits a
landmark Nature Physics paper [2] that de-
scribes “the first dynamical quantum simu-
lator” [3]. This experiment used ultracold
atoms in an opti-
cal lattice to simu-
late the relaxation
towards equilibri-
um of an interact-
ing one-
dimensional Bose
gas. Using Bath’s
high-
performance computing (HPC) resources,
Paul decided to investigate whether these
results could be verified on a non-quantum
(i.e. classical) supercomputer. To do this,
he represented the state of the system in a
compressed format known as a tensor train
or matrix product state (MPS). This allowed
him to use a parallel implementation [4] of
the quasi-exact time-evolving block deci-
mation (TEBD) algorithm [5]. Paul’s TEBD

Paul is a PhD candidate within the

Departments of Mathematical Sci-

ences and Physics who successfully

defended his thesis in April 2024.

During his PhD, his research focused

on optimising and parallelising ma-

trix product state algorithms for

quantum many-body physics.

Paul Secular (PhD Researcher, Departments of Mathematical Sciences and Physics)
Email: p.m.secular@bath.edu

"HPC aids Paul's research by allowing

him to run parallel tensor train algo-

rithms on multiple compute nodes in

order to verify quantum simulation ex-

periments"

Figure 1: Relaxation with simulation time (t) of the mean density of odd lattice sites (nodd)
for various interaction strengths (U). Markers show the experimental quantum simulator
data, while the solid curves are the parallel TEBD results.

Figure 2: Weak scaling plots of Paul’s
TEBD code.

 2

Running Interactive Jupyter Notebook from Your Local
Machines on Nimbus

U N I V E R S I T Y O F B A T H

Jupyter Notebook is a useful tool for shortening the feedback
loop from coding and results visualization in an interactive
way. By launching a "headless" Jupyter Notebook as a batch
job, users can tap into Nimbus's robust computing resources
while enjoying the familiar Graphical User Interface (GUI) on
their local machines' web browsers—be it a desktop or a lap-
top. This will allow the User to use the Nimbus compute re-
sources without the need of installing any Python packages on
the local machine to run the Jupyter Notebook.

I S S U E 4 M A Y 2 0 2 4 HPCB YTES

Contact us
Research Computing Team

Digital, Data and Technology
Email: it-hpc@bath.ac.uk

• If you would like to contribute a case study or article to be featured in HPCBytes,
please get in touch with the Research Computing team.

• If you would like to hear more, please subscribe to the Research Computing mailing
list here: https://forms.office.com/e/rF8rLWbakA

Acknowledgements
The Research Computing team would like to thank all contributors for the current issue of HPCBytes.

The job script to launch Jupyter. Change

cores/partition as per your needs and account.

#!/bin/bash

#SBATCH --job-name=jupyter-test

#SBATCH --output=jupyter-test.out

#SBATCH --error=jupyter-test.err

#SBATCH --account=CA-CS1HGN-0XX

#SBATCH --qos=paygo-fsv2-1

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --partition=paygo-fsv2-1

#SBATCH --time=01:00:00

NOTEBOOK_LOGFILE=jupyterlog.out
get port forwarding info into a file

node=$(hostname -s)

user=$(whoami)

cluster="nimbus.hpc.bath.ac.uk"

port=9300

echo -e "Run the following command from your

local machine terminal with local machine

port YYYY:

$ ssh -N -f -L YYYY:${node}:${port} ${user}

@${cluster}" > port_forwarding.txt

module purge
source /apps/build/easy_build/scripts/id_instance.sh

source /apps/build/easy_build/scripts/setup_modules.sh

module load Anaconda3/2022.10

Run the Jupyter notebook

jupyter notebook --no-browser --ip=${node} -

-port=${port} > ${NOTEBOOK_LOGFILE} 2>&1

Tip of the Month
Select your partition on Nimbus

list all available partitions

[user@login1 ~]$ sinfo
Check details of a specific partition (Max.

walltime and nodes/job, tot. nodes, default mem..)

[user@login1 ~]$ scontrol show partition par-

tition_name

HPC News and Updates

Isambard 3 coming soon
Isambard 2 wi l l go into maintenance mode before i ts
June end shutdown. From May 1st, 2024, no new
users or updates wil l be accepted . Users should
move the ir data to personal s torage by June's end.
Applicat ion process for new user accounts on Isam-
bard 3 wi l l be announced soon.

Step-1: Submit the Jupyter Notebook Job on Nimbus

Step-2: Once the job is running, do the port forwarding
on your local machine

[user@nimbus-1-login-1~]$ cat port_forwarding.txt

Run the following command from your local machine

terminal with local machine port YYYY:

$ ssh -N -f -L YYYY:nimbus-1-paygo-xxxxxxxx:9333

user@nimbus.hpc.bath.ac.uk

- Check the “port_forwarding.txt” file made after

the job started running:

- Run the port forwarding command from your local

machine terminal (Linux/putty/mobaxterm etc.).

Remember to replace YYYY with a local port no.

which could be same as Jupyter port on Nimbus.

This may ask for your nimbus password.

[@localmachinexxx]$ ssh -N -f -L 9300:nimbus-1-

paygo-xxxxxxxx:9300 user@nimbus.hpc.bath.ac.uk

Step-3: Open web browser in local machine and type
localhost:YYYY

[user@nimbus-1-login-1~]$ tailf jupyterlog.out

http://nimbus-1-xxxxxxx:9300/

token=93dd55ca40b2f463fxxxxxxxxxxxxx

- Get the token from jupyterlog.out file and paste

