Researchers discover altruism is favoured by chance

Why do we feel good about giving to charity when there is no direct benefit to ourselves, and feel bad about cheating the system? Mathematicians may have found an answer to the longstanding puzzle as to why we have evolved to cooperate.

An international team of researchers, publishing in the Proceedings of the National Academy of Sciences, has found that altruism is favoured by random fluctuations in nature, offering an explanation to the mystery as to why this seemingly disadvantageous trait has evolved.

The researchers, from the Universities of Bath, Manchester and Princeton (USA), developed a mathematical model to predict the path of evolution when altruistic “cooperators” live alongside “cheats” who use up resources but do not themselves contribute.

Cooperators vs. cheats

bees

Explaining why cooperation has evolved has long puzzled scientists

Humans are not the only organisms to cooperate with one another. The scientists used the example of Brewer’s yeast, which can produce an enzyme called invertase that breaks down complex sugars in the environment, creating more food for all. However, those that make this enzyme use energy that could instead have been used for reproduction, meaning that a mutant "cheating" strain that waits for others to do the hard work would be able to breed faster as a result.

Darwinian evolution suggests that their ability to breed faster will allow the cheats (and their cheating offspring) to proliferate and eventually take over the whole population. This problem is common to all altruistic populations, raising the difficult question of how cooperation evolved.

Dr Tim Rogers, Royal Society University Research Fellow at the University of Bath, said: “Scientists have been puzzled by this for a long time. One dominant theory was that we act more favourably towards genetic relatives than strangers, summed up by J. S. Haldane’s famous claim that he would jump into a river to save two brothers or eight cousins.

“What we are lacking is an explanation of how these behaviours could have evolved in organisms as basic as yeast. Our research proposes a simple answer – it turns out that cooperation is favoured by chance."

Cooperation favoured by chance

The key insight is that the total size of population that can be supported depends on the proportion of cooperators: more cooperation means more food for all and a larger population. If, due to chance, there is a random increase in the number of cheats then there is not enough food to go around and total population size will decrease. Conversely, a random decrease in the number of cheats will allow the population to grow to a larger size, disproportionally benefitting the cooperators. In this way, the cooperators are favoured by chance, and are more likely to win in the long term.

Dr George Constable, soon to join the University of Bath from Princeton, uses the analogy of flipping a coin, where heads wins £20 but tails loses £10:

“Although the odds winning or losing are the same, winning is more good than losing is bad. Random fluctuations in cheat numbers are exploited by the cooperators, who benefit more then they lose out.”

88 per cent of mathematical sciences research from the University of Bath was judged to be internationally excellent by the in the recent independently-assessed Research Excellence Framework 2014.

---------------------------------------------------------------------------------------------------

If you liked this article you may also be interested in:

Scientists discover how two-tone cats get their patches

Locusts interact with several neighbours to swarm together

Research demonstrates how crows have water-cooler moments

Bath Institute for Mathematical Innovation turns data into good decisions

Bookmark with:

What is this?

We are one of the UK's leading universities with an international reputation for quality research and teaching. Our Mission is to deliver world class research and teaching, educating our graduates to become future leaders and innovators, and benefiting the wider population through our research, enterprise and influence. Our courses are innovative and interdisciplinary and we have an outstanding record of graduate employment.