How two-tone cats get their patches comes to light in cell study

Scientists have discovered how the distinctive piebald patches seen in black and white cats and some horses are formed in the womb.

Their insights could shed light on medical conditions that occur early in development, such as holes in the heart, which are caused by cells not moving to the right place as an embryo develops.

How the cat got its patches

Researchers who set out to learn how pigment cells behave in mice found that they move and multiply randomly during early development rather than follow instructions.

Their findings contradict the existing theory that piebald patterns form on animals’ coats because pigment cells move too slowly to reach all parts of the embryo before it is fully formed.

The characteristic piebald patches seen in many domestic animals is caused by the darkly pigmented cells multiplying more slowly so they don't cover the whole of the body (Image from Shutterstock by microcosmos)

The study, by mathematicians and geneticists, shows that there is no complicated cell-to-cell communication to send the cells in a particular direction.

The same mathematical model could now be used to follow other types of cell during early development. Researchers at the Universities of Bath and Edinburgh, who carried out the study, say it could help them better understand conditions linked to early cell positioning.

Dr Richard Mort, from the University of Edinburgh’s Medical Research Council Human Genetics Unit said: ‘‘We already know cells move through the developing skin to create pigment. We have discovered that they move and multiply at random which is not what was expected. Using a mathematical model we were then able to show that this simple process could explain piebald patterns.’’

Mathematical modelling

Dr Christian Yates, a Mathematical Biologist from the University of Bath, added: “Piebald patterns can be caused by a faulty version of a gene called kit. What we have found is counter intuitive. Previously it was thought that the defective kit gene slowed cells down but instead we’ve shown that it actually reduces the rate at which they multiply.

"There are too few pigment cells to populate the whole of the skin and so the animal gets a white belly. In addition to kit, there are many other genes that can create piebald patterns, the mathematical model can explain piebald patterns regardless of the genes involved.’’

The research, published in Nature Communications, was funded by the Medical Research Council, Medical Research Scotland, the Engineering and Physical Sciences Research Council and the National Centre for Replacement, Refinement and Reductions of Animals in Research.

Dr Yates has written an article further explaining the research in The Conversation.

88 per cent of mathematical sciences research from the University of Bath was judged to be internationally excellent by the in the recent independently-assessed Research Excellence Framework 2014.


If you liked this article, you might also be interested in:

How the cat got its coat (and other furry tails)

Locusts interact with several neighbours to swarm together

Bath launches new Institute for Mathematical Innovation

Maths network will help solve real-world industry problems

Research demonstrates how crows have water-cooler moments

For media enquiries:

Vicky Just
University Press Office
44 (0) 1225 386883
44 (0) 7966 341357