EU Project helps boost “Organic” electronics

Light-up clothing, medical sensors and electronic wallpaper are just a few of the possible future applications that may be enabled by flexible and printable electronics using carbon-based materials.

EXTMOS (EXTended Model of Organic Semiconductors), a €5 million pan-European collaborative research project led by the University of Bath, will help develop new organic semiconductor materials and additives that can be printed onto flexible film to create devices that are low cost, flexible, wearable and lightweight.

Semiconductors based on carbon instead of silicon can be printed onto flexible film to create devices that are low cost, wearable and lightweight

Testing new materials in a virtual environment

Organic materials are used in applications such as flexible displays, billboards and low energy diffuse lighting and wearables. They also have exciting potential for the Internet of Things, where electronics are embedded in objects and transfer data without human intervention.

The EXTMOS project, part of the EU Horizon 2020 research and innovation programme, aims to reduce the time and effort involved in manufacturing and testing new materials and hence lower the production costs.

Project leader Professor Alison Walker, from the University of Bath’s Department of Physics, explained: “Currently the process of developing and testing of new materials is very time-consuming because of the high number or permutations of structure open to organic chemists.  This project aims to develop the tools to enhance decision making concerning which materials are synthesised for a given target device performance.

“By theoretically predicting the motion of electronic charges, we will be able to test out new materials in a virtual environment before making and testing the most promising materials combinations in the lab. This process will accelerate development of new materials and device structures.”

Professor Alison Walker and Dr Enrico Da Como

Professor Alison Walker and Dr Enrico Da Como with an organic LED lightbox

Sharing ideas across disciplines

Dr Enrico Da Como, also from Bath, commented: “The EXTMOS project is taking a new approach by sharing ideas in a network across multiple disciplines to make a model that will predictably identify a new generation of materials.”

EXTMOS is a pan-European collaboration of 8 academic partners: the universities of Bath, Mons, Bologna, the Karlsruhe Institute of Technology, the research institutes of Nanosciences et Cryogénie of the CEA organization and the Institut Néel in Grenoble, the Max Planck Institut für Polymerforschung, Mainz and Imec, Leuven along with 4 industrial partners: Novaled, FlexEnable, Silvaco Europe and Nanomatch. US advisors are Antoine Kahn, Princeton, Roland Faller, UC Davis, Ana Claudia Arias, UC Berkeley.

91 per cent of physics research from the University of Bath was judged to be world-leading or internationally excellent by the in the recent independently-assessed Research Excellence Framework 2014.

Video about EXTMOS project

EU Project helps boost "Organic" electronics from University of Bath on Vimeo.


If you liked this article you may also be interested in:

Why you should get ready to say goodbye to the humble lightbulb

Organic semiconductors will create cheaper, greener devices

Bath semiconductor research boosted by new nano-scale patterning equipment

Shedding light on why blue LEDs are so tricky to make

For media enquiries:

Vicky Just
University Press Office
44 (0) 1225 386883
44 (0) 7966 341357