- Student Records
Programme & Unit Catalogues

 

Department of Chemical Engineering, Unit Catalogue 2009/10


CE20089: Transport phenomena 2

Click here for further information Credits: 6
Click here for further information Level: Intermediate
Click here for further information Period: Semester 1
Click here for further information Assessment: EX 100%
Click here for further informationSupplementary Assessment: Like-for-like reassessment (where allowed by programme regulations)
Click here for further information Requisites: Before taking this unit you must take CE10083
Description: Aims:
To introduce:
1) the underlying phenomena, design methods and principles of heat exhangers, and
2) boundary layer theory.
3) Compressible flow.

Learning Outcomes:
After successfully completing this unit students should be able to:
* Develop heat transfer correlations for natural and forced convection.
* Calculate natural and forced heat transfer coefficients.
* Develop correlations for condensation at vertical and horizontal surfaces.
* Calculate condensation coefficient.
* Perform outline design calculations for shell, plate and spiral heat exhangers.
* Appreciate different types of condenser and reboilers and their application.
* Apply heat transfer theory to the design of embroilers and condensers.
* Apply Reynold's analogy, film model and j-factor analogy to fluid flows.
* Apply the continuity and the momentum equation to moving fluids.
* Apply laminar boundary theory to moving fluids.
* Describe compressible flow phenomena.

Skills:
Analysis and problem solving (taught/facilitated and assessed).

Content:
* Natural convection & Forced convection, including dimensional analysis and correlations for heat transfer.
* Heat losses from pipes.
* Heat exchanger effectiveness - NTU relations.
* Heat transfer from boiling liquids.
* Dropwise and film condensation.
* Heat exchanger selection and design, including various single phase units.
* Introduction to boundary layer flow: definition of boundary layer thickness, simple form of the momentum equation and approximate solution for laminar and turbulent boundary layers.
* Separation and wake formation.
* Shocks and supersonic flow.
* Models and mechanisms; Reynold's and film models, j-factor analogy.
NB. Programmes and units are subject to change at any time, in accordance with normal University procedures.