- Student Records
Programme & Unit Catalogues

Department of Biology & Biochemistry, Unit Catalogue 2007/08


BB30129 Sensory and signalling networks in plants

Credits: 6
Level: Honours
Semester: 1
Assessment: ES 20%, EX 80%
Requisites:

Aims & Learning Objectives:
To provide a molecular and biochemical understanding of sensory mechanisms in higher and lower plants that enable them to monitor and respond to changes in their environment. To illustrate the modular nature of sensory mechanisms by comparing environmental signalling in plants with a range of other organisms from fungi to mammals. After taking this course the student should be able to:
* Understand why and how plants monitor their environment and the consequences of failing to do so.
* Understand the molecular and biochemical nature of mechanism by which plants sense and respond to changes in light, temperature, water, nutrients, abiotic stresses and to other organisms.
* Appreciate how sensory mechanisms have evolved to meet specific requirements of plants.
* Demonstrate in depth understanding of the modular nature of environmental signalling systems in plants.
* Make an objective assessment of how environmental signalling might be improved or exploited for the benefit of agriculture and horticulture.
Content:
The course will consider environmental signals that plants monitor and respond to in order to thrive. These include light, temperature, water, nutrients, abiotic stresses and other organisms. The mechanisms which higher and lower plants have evolved to monitor and respond to light intensity, quality, direction and periodicity will be described at the molecular level. Key light signalling components also exist in other organisms and the comparative biology of these will be considered. Sensory mechanisms for essential nutrients such as nitrate and sugars will be described and contrasted with similar mechanisms in other organisms. Perception of, and adaptive responses to, abiotic stresses such as salinity and drought will be considered at both molecular and holistic levels. The importance of abiotic stress management to crop productivity will also be explored. Responses to temperature will include the role of vernalization in controlling flowering time, and parallels between heat shock mechanisms in plants and animals. Signalling between plants and other organisms will concentrate on plant-insect interactions, and on the complex symbiotic relationship between legumes and Rhizobium bacteria. The role and action of plant hormones in relaying environmental information will be described in relation to interactions with nutrient and light signals.