- Student Records
Programme & Unit Catalogues

Department of Chemistry, Unit Catalogue 2007/08


CH10133 Atomic structure, bonding and the Periodic Table

Credits: 12
Level: Certificate
Academic Year
Assessment: EX 80%, OT 20%
Requisites:
While taking this unit you must take CH10010 and take CH10135 and take CH10137 and in taking this unit you cannot take CH10134
Aims: The Unit will provide an introduction to the basics of the nature of the atom, elementary bonding theory, solid-state structural chemistry, periodic trends in main group chemistry and the electronic structure of transition metal compounds.
Learning Outcomes:
After studying this unit, students should be able to:
* Name the first 36 elements, their symbols and electronic configurations.
* Name the four quantum numbers and their allowed values.
* Draw radial and angular functions for s, p, d orbitals.
* Describe the bonding in diatomic molecules using molecular orbital (MO) theory
* Construct MO energy level diagrams and be able to extract chemical information from them
* Derive the shapes of molecules using the VSEPR method.
* Define basic crystallographic concepts.
* Describe the main types of inorganic structures through cell-projection diagrams.
* Provide a theoretical treatment for lattice energies.
* Describe the basic principles of s- and p-block chemistry, including hydrogen.
* Use the redox properties of the s- and p-block elements to predict and rationalise chemical reactions.
* Describe the basic chemistry of elements from Groups 15, 16 and 17.
* Solve basic problems in quantitative inorganic analysis.
Skills:
Numeracy (F, A); Problem solving (T, F, A); Oral communication (F).
Content:
Bohr model of the atom, quantization, properties of waves, Schrödinger equation and its solutions, angular and radial functions, quantum numbers. The Periodic Table, Aufbau Principle, Hund's Rules; ionisation energy, electron affinity and electronegativity. Molecular orbital theory for homo- and di- atomic molecules. VSEPR, hybridisation. Coordination chemistry: definitions, shapes, ligand classification, nomenclature and conformations; chelate complexes. Coordination numbers and geometries, isomerism. Solid state structures, radius ratio rule, cell projections for common structural types, lattice energy. Chemical bonding theory, shapes of molecules. The s-block elements, properties related to reactivity and size. H-bonding. Oxidation states of the p-block elements, stability, lone-pair effect, free energy (Frost) diagrams. Chemistry of the halogens and noble gases and their inter-relationship. Hydrides of O, S, N, P and halogens. Properties of co-ordination compounds. Tetrahedral, square planar, and octahedral complexes; Introduction to Crystal Field Theory and splitting of d orbitals in octahedral and tetrahedral complexes. Chemical formulae, moles, molarity, oxidation and reduction. Application of mathematical methods to solving chemical problems.