New method for detecting and preserving human stem cells in the lab

Human stem cells that are capable of becoming any other kind of cell in the body have previously only been acquired and cultivated with difficulty. A team of European scientists including researchers from the University of Bath has now developed a method to detect such pluripotent cells in a cell culture and preserve them in the laboratory.

New stem cell technique

"With our guidelines it should be possible for researchers all over the world to obtain these coveted stem cells and, possibly, to develop pioneering treatments with them," says the senior author of the study, Zsuzsanna Izsvák at the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.

Her team has been working with Professor Laurence Hurst, Director of the University of Bath’s Milner Centre for Evolution in the Department of Biology & Biochemistry and with colleagues from the Paul Ehrlich Institute in Langen, Germany and published the procedure in the scientific journal Nature Protocols.

Naive-like stem cells

Scientists hope in the future to use pluripotent stem cells, from which it is theoretically possible to cultivate every type of tissue, to cure a variety of diseases.

Professor Hurst explained: “Most stem cells are primed to some extent to become a certain type of cell. If you use the analogy of a train network, these cells are like one of the main London stations. Trains from Paddington can go to Cardiff or Exeter, but not to Norwich. In the same way, these cells can develop into a fixed number of different cell types.

“However naïve-like pluripotent stem cells are like a central terminus; they are present earlier in the embryo’s development and so we think their fates can go in any direction and become any type of cell.”

Naive-like stem cells could potentially be used to treat dementia or reduce organ transplants

Preserving cells for longer

In contrast to, for example, those of mice, human stem cells removed from embryos in the laboratory quickly lose their original state: "Naive stem cells usually make up less than five percent of a cell culture," explains Izsvák.

She and her colleagues have therefore devised a trick to isolate such cells and keep them pluripotent for longer.

The researchers had already presented their methodological principles in late 2014 in the scientific journal Nature. At that time, they had located a sequence named HERVH, which is active in the genetic material of naive stem cells.

Using a reporter gene, which they had linked to a fluorescent protein, the researchers were able to maintain HERVH in an active state and simultaneously detect the cells that had retained pluripotency.

Izsvák notes that this method is suitable not only for embryonic stem cells, but also for induced pluripotent stem cells. These iPS cells are considered an ethically neutral alternative to embryonic cells, because they are artificially rejuvenated mature cells taken from adults.

85 per cent of the University’s Biological Sciences research was recently assessed as world-leading or internationally excellent in the recent independently-assessed Research Excellence Framework 2014.


If you liked this article you may also be interested in:

Scientists make stem cell discovery

Scientists discover why X chromosome lacks “housekeeping genes

Why is the X chromosome so odd? Traffic analogy helped us crack the mystery

'Silent' mutations useful for medical diagnosis

Bookmark with:

What is this?

We are one of the UK's leading universities with an international reputation for quality research and teaching. Our Mission is to deliver world class research and teaching, educating our graduates to become future leaders and innovators, and benefiting the wider population through our research, enterprise and influence. Our courses are innovative and interdisciplinary and we have an outstanding record of graduate employment.