Physics at Bath

Undergraduate degrees in
Physics
Physics with Astrophysics
Mathematics and Physics
Welcome to the Department of Physics

“The Department of Physics offers a distinctive environment for studying at all levels with internationally recognised teaching and research. Our highly-motivated students learn from top physicists through carefully designed and run study programmes. We offer a combination of ground-breaking research, excellent links with industry, one of the best placement schemes in the country and outstanding teaching leading to high student satisfaction, achievement and employment. Above all, we’re a friendly department, dedicated to advancing physics equally through our research and our teaching. We are committed to providing the right balance of support and challenge to enable you both to make the most of your overall university experience and to achieve your full potential as a physicist. I hope you enjoy learning more about our Department. If you have any questions or would like any further information please get in contact.”

Professor Simon Bending
Head of Department
Why study physics?

Physics

Physics is ‘the science of everything’ - studying matter, energy and how they interact. It searches for the universal principles underlying diverse natural phenomena. It is also an essential element of other disciplines, for example, natural sciences, engineering and technology.

Our courses cover the full range of core physics and its applications. Building on the basics and the most recent developments in physics research, we can explore the universe; from the nanoscale to the cosmological. We look at nano-engines and organic electronics, investigate graphene properties and design innovative instruments, all the way to studying planets and galaxies, and understanding the structure and evolution of the universe.

Why study Physics with Astrophysics?

All of our physics courses give an insight into astrophysics. By choosing to study Physics with Astrophysics you will gain an in-depth specialist knowledge of how to apply physics to understand the origins and evolution of the universe. During these courses you will learn how we assemble the evidence and clues from the broad-band spectroscopy of astronomy to build consistent theoretical models of the cosmos.

Why study Mathematics and Physics?

Mathematics is a subject of logic, rigour and proof. Mathematics and physics have a natural infinity; physics cannot be studied seriously without mathematics, and applied mathematics has roots in the fundamental equations of physics. However, when you can take the patterns of mathematics and apply them to the data of the observed world then you are modelling reality – understanding the past and predicting the future. Our courses in Mathematics and Physics empower you with the core topics of physics (taught by the Department of Physics), supplemented with a wide range of mathematical techniques (taught by the Department of Mathematical Sciences).

See page 8 for more information on our courses.
What’s special about Physics at Bath?

- Full semester MPhys research projects and placements, offering immersive experience of physics research
- Opportunities to apply your physics to real-world projects with a wide range of organisations
- Nationally and internationally outstanding placements scheme, fully supported by a dedicated Placement Team
- Global opportunities for study year abroad, research projects and placements
- A comprehensive tutorial system providing academic and pastoral support
- Considerable flexibility to transfer between courses.

Career opportunities

A wealth of career opportunities are open to you as a physics graduate. Over the course of your studies you will develop analytical and critical thinking skills, the ability to solve problems and to work collaboratively with others – these are some of the key skills graduate recruiters are looking for. A physics degree will enable you to work within a wide range of careers, including:

- scientific research and development
- engineering/software
- healthcare
- banking, finance and accountancy
- satellite systems
- defence (government and industry)
- renewable energies.

All of our degrees are fully accredited by the Institute of Physics. This recognition of knowledge of core physics can be extended after graduation. After a period of appropriate experience, you can apply to become a Member of the Institute of Physics (MInstP), or gain chartered status (CPhys or CEng), the ultimate mark of professionalism and commitment.
Research excellence

Bath is one of the leading research intensive physics departments in the UK with a high international profile – 91% of our research was judged as world-leading or internationally excellent in the most recent Research Excellence Framework (REF 2014).

As a student here, you will be taught by award-winning academics who manage state-of-the-art research facilities, giving you an outstanding learning and teaching experience. MPhys students undertake research projects using these facilities or sometimes at selected international partner laboratories. Many BSc and MSci final year projects are also carried out in research laboratories.

Our research covers a wide spectrum of activities, from fundamental physics to technological applications, and can be grouped into five main research areas:

- Astrophysics
- Centre for Space, Atmospheric and Oceanic Sciences
- Condensed matter theory
- Nanoscience
- Photonics.

Visit www.bath.ac.uk/physics/research for more information.

Bath part of new quantum information processing network

The Centre for Photonics and Photonic Materials is contributing to a new quantum information technologies hub through its optical fibre fabrication facility and optics labs. The hub’s focus is on quantum information processing, which will enable users to solve problems that even the most powerful of today’s supercomputers struggle with.

Dr Peter Mosley, Director of the Centre, says: “A key requirement for these quantum networks is the capability to convert individual photons between different wavelength ranges. In other words, to change the colour of single photons, while preserving the information that they carry. Here in Bath we will work on wavelength conversion of single photons using the exceptional properties of the optical fibre that we can fabricate, known as photonic crystal fibre.”

Helping the silent world with sound physics

Research led by Dr Philippe Blondel from the Department of Physics is measuring underwater noise levels to determine the impact of increasing shipping and offshore industry noises on marine environment and wildlife. To distinguish between what is ‘normal’ and ‘unwanted’ noise, Dr Blondel measures these sounds in the field, directly or by deploying long-term autonomous recorders. Looking at noise variations from less than a second to several years, he can quantify the impacts of natural and man-made noises on marine life and other activities.

New techniques that have been developed from this research have been used extensively in different projects around the world, for example in marine mammal mitigation, in liaison with concerned industries, and for monitoring glacier response to climate change in the Arctic.
Ensuring your success

Teaching methods
We use a wide range of teaching methods to develop your theoretical and practical abilities as well as the communication, problem solving and project management skills that are highly sought after by employers. You will have around 20 timetabled hours of contact time per week made up of lectures, laboratory sessions, problem-solving classes, computing and programming sessions, project work, skills development sessions and academic tutorials.

Tutorials
As a physics student at Bath you will benefit from a comprehensive tutorial system providing academic and pastoral support. You will be assigned a personal tutor from the academic staff, who will meet with you weekly in the early years of your course, offering you guidance and support throughout your studies. Having followed your progress to fully qualified physicist, tutors can also provide knowledgable references for job applications.

Methods of assessment
Each unit you study is worth a set number of credits towards your final award classification. Units normally range from three to 12 credits each and a total of 60 credits are awarded per year. You will be assessed through a variety of methods, including examinations, practical reports, essays, poster presentations, written project reports and online tests.

Facilities
The Department of Physics has well-eqipped undergraduate teaching laboratories that cater for core experimental work, and our state-of-the-art MPhys laboratory provides students with research quality apparatus. In addition, our computing laboratory has dedicated PCs for network access, programming and computational work with central University software. Many of our facilities are managed by the Microscopy and Analysis Suite (MAS) and the Chemical Characterisation and Analysis Facility (CCAF) with a wide range of techniques available and staffed by dedicated research officers.

Academic skills and English language courses
The University offers free academic skills and English language courses to all undergraduate students. Academic skills development, including academic writing and presentation skills, is either embedded in your normal timetable or can be taken as extra classes. Further English language courses are provided free for students whose first language is not English. All of these courses are delivered by a team of highly-qualified and experienced teachers, working closely with academic and Professional Services colleagues across the University. Visit www.bath.ac.uk/asc to find out more.

Outside of the classroom, the Self-Access Language Centre offers online and offline resources in different languages: www.bath.ac.uk/salc

Online resources and drop-in sessions are also available from the Mathematics and Statistics Help (MASH) centre: www.bath.ac.uk/study/mash
All of our courses are structured so you can choose to spend a year on a professional placement. Placements are a minimum of 44 weeks of paid employment giving you the chance to broaden your experience and transferable skills. Applying for a placement during your second year, you will be employed full-time in the third year of your degree. You will then return to the University for your final year or years of study.

Research placement

MPhys students who choose the research placement option will spend six months (generally July to December) in their final year of study working in a research establishment before returning to the University for the final semester of their degree. This option can be chosen instead of, or in addition to a professional placement.

We are one of the few physics departments selected by BP for their scholarship programme to recognise our highly talented undergraduates.

Why do a placement?

- Experience working in a professional environment. This is an opportunity to put knowledge into practice and be paid for it, as well as gain contacts in a field you are interested in
- Students often return from placement with increased motivation and a greater appreciation of the relevance of their studies to their future career
- Improve your employability; employers favour graduates with employment experience as well as a good degree
- Gain invaluable experience of the recruitment process
- Learn about an organisation and its area of work; this is an excellent opportunity to evaluate future career paths
- Develop time management, communication and team working skills
- Students are sometimes offered permanent graduate jobs by their placement providers.

Recent placements

We have long-standing links with many leading companies throughout Britain and Europe. Opportunities can vary widely from basic scientific research or engineering to non-specific areas such as finance. Recent employers have included:

- BAE Systems
- CERN
- National Institute for Oncology, Budapest
- Samsung
- Siemens
- ESRF and The Institut Laue-Langevin (ILL), Grenoble
- Science and Technology Facilities Council
- Max Planck Institute for Solid State Physics, Stuttgart
- Swiss Federal Institute for Snow and Avalanche Research, Davos.

Support and guidance

Our Placements Team will support and guide you throughout the process including applying for positions, CV writing and interviews. A dedicated Placements Tutor will also keep in contact with you throughout the year and you will be visited at your place of work by your Personal Tutor where possible. The professional placement does not count towards your final award classification but is structured and monitored so that it can form part of your career development.

Please note, although the Placements Team can offer considerable support in the application process, it is your responsibility to secure a placement. Securing the right placement takes time and effort and there may be competition for places with other students and universities.

Over my placement year I have developed many skills alongside learning a new language. I have also begun to understand which path I wish to take after completing my studies. The opportunities I have been given have led to me working with external companies, undertaking fieldwork in the Swiss Alps, attending scientific conferences, working with specialist equipment, publishing my first scientific paper and much more. I cannot recommend a placement year enough to future students.*

Amy Macfarlane, BSc Physics
Study year abroad

All of our courses give you the opportunity to apply for a study year in the physics department of a university abroad. We currently have links with several universities in North America, Australasia and Asia, including:

- Binghampton University, New York State
- National University Singapore
- Purdue University, Indiana
- University of Canterbury, New Zealand
- University of Nebraska.

The Faculty of Science has many partner institutions in Europe and we’ve recently placed physics students in Austria, Finland and Spain.

Courses at overseas institutions are carefully selected to complement those taken at Bath. For MPhys students, the work done at an overseas university contributes towards the final degree classification. See page 12 for the MPhys course structure.

Please note that exchange agreements with overseas institutions evolve with time, and no guarantee can be given that any specific university will be available in any given year.

Foreign language courses

There will be a requirement for foreign language skills in some universities. The University’s Foreign Languages Centre offers courses to all students whether spending a year abroad or not, from beginners to advanced. These include French, German, Spanish, Italian, Japanese and Mandarin Chinese. Visit www.bath.ac.uk/flc to find out more.

How to apply

The study year abroad option does not need to be confirmed until your second year. Places are limited and will normally involve a competitive selection process if they are oversubscribed. Students will be selected based on overall academic achievement and relevant language skills where appropriate.
All of our courses will equip you with the knowledge and skills you need to embark on a successful career in physics and science in general. Studying here you will:

- Have the chance to study physics at an advanced level with lecturers who are international researchers
- Develop the ability to think clearly and logically, and to be enquiring, imaginative and creative
- Be prepared for higher studies (including PhD); you will develop strong research skills
- Be highly attractive to top graduate employers through the experiences and skills that you develop.

We offer courses leading to an award of BSc, MPhys or MSci, in the following three areas of physics.

Physics

BSc, MPhys
Our BSc and MPhys courses are designed to appeal to students who enjoy mastering the mysteries of physics by working from first principles through to advanced problem-solving challenges. There are a wide range of opportunities for you to put your physics knowledge into practice, in research labs and other professional environments outside the University.

Physics with Astrophysics

BSc, MPhys
Our Physics with Astrophysics courses provide a solid grounding in physics whilst also enabling you to gain in-depth specialist knowledge of astrophysics. You will learn how to apply your physics knowledge to understanding the origins and evolution of the universe, including the fundamental intertwining of space, time, matter and energy. You will also have opportunities to undertake experimental and computational astrophysics projects.

Mathematics and Physics

BSc, MSci
The aim of our BSc and MSci Mathematics and Physics courses is for students to understand the rigour and generality which form a university education in mathematics, while appreciating the role of physics in providing an understanding of the physical world. These degrees are taught jointly with the Department of Mathematical Sciences and you will have the opportunity to transfer into single-subject physics or mathematics degrees after your first year.

BSc, MPhys or MSci?

What is a BSc?
A Bachelor of Science (BSc) is typically a three year degree, or four years if you choose the professional placement option. You will study all the core physics that a graduate physicist should know and have considerable choice in units for the final year of your course. You will acquire the skills – numeracy, problem-solving, analysis – which employers value in physics graduates in the commercial and business world.

What is an MPhys?
A Master of Physics (MPhys) degree is longer than a Bachelors degree and typically takes four years to complete. It is designed for students who may wish to pursue a career in pure or applied science. It gives all the core skills and knowledge of the BSc and opens pathways to more technical careers. Our courses are particularly designed to prepare students for further postgraduate study such as PhD or employment in a research role in areas related to our research strengths. The final year includes a major research project.

What is an MSci?
Our Master of Science (MSci) courses are the undergraduate-masters degrees in Mathematics and Physics. To recognise the masters-level achievements in mathematics you will earn the qualification of Master of Science rather than being a Master of Physics. It takes four years to complete and like our other courses, students are given the option to undertake a professional placement or study year abroad after year two.

Common course structure
Our courses follow a common structure in years one and two. Core units are designed to build on your existing skills and provide you with a broad practical and theoretical knowledge of the subject. This common structure gives you considerable flexibility to switch between MPhys or BSc, and the three, four or five year course options, as you discover your strengths and interests at university-level physics.

Final years
The third year gives the greatest choice of units across a wide range of topics and departments. In the final year of your course, you will study some mandatory units required by the course specification and will undertake a research project. This will expose you to the world of research and is a valuable experience when you apply for postgraduate courses or graduate jobs.

See pages 10-14 for course structures.
Common entry requirement
All of our degree courses have the same entry requirements. This is part of our designed flexibility: if you gain admission for one course you are equally qualified to swap to any other physics course.

A Level
Typical Offer
A*AA including Mathematics and Physics, with grade A* in Mathematics or Physics.
Alternate offer
AAA including Mathematics and Physics plus one of the following:
• Grade A in an EPQ
• Grade B in the Welsh Bacc Advanced Skills Challenge Certificate
• Grade M1 in Cambridge Pre-U Global Perspectives
Desirable
Any subject may be offered for the third A Level choice.
Excluded Subjects
• All A-level offers exclude General Studies and Critical Thinking.
• Language qualifications which are intended for non-native speakers are not normally acceptable when offered by native speakers of that language.

Cambridge Pre-U
Typical offer
D2, D3, D3 including Mathematics and Physics, with D2 in Mathematics or Physics
Alternate offer
D3, D3, D3 including Mathematics and Physics plus one of the following:
• Grade A in an EPQ
• Grade B in the Welsh Bacc Advanced Skills Challenge Certificate
• Grade M1 in Cambridge Pre-U Global Perspectives

International Baccalaureate
38 points, to include 6 in Higher Level Mathematics and Physics.

Other qualifications may be accepted. For detailed and up-to-date information please check our website.
www.bath.ac.uk/physics/admissions
Our BSc courses aim to provide you with a broad understanding of modern physics before enabling you to specialise in specific areas. You can focus your unit choices on astrophysics to earn the Physics with Astrophysics award or study mathematics from the Department of Mathematical Sciences for a degree in Mathematics and Physics. All of these degrees provide the option of a professional placement or study year abroad. The structure is the same for all of our BSc courses with slight variations in the units studied, especially with the Mathematics and Physics courses as these units are taught jointly with the Department of Mathematics.
Course structure

Year 1
- **BSc (Hons) Physics**
 - Core physics, mathematics, laboratory and computing units
 - Core physics 1: Introduction to quantum physics; Properties of matter; Vibrations, waves & optics; Electricity & magnetism; Mathematical methods for physics; Experimental physics & computing; Electric circuits; Classical mechanics; Relativity & astrophysics
- **BSc (Hons) Physics with Astrophysics**
 - Core physics, mathematics, laboratory and computing units
 - Core physics 1 (see left) and Analysis; Algebra; Methods & applications
- **BSc (Hons) Mathematics and Physics**
 - Core physics, mathematics, laboratory and computing units
 - 0% of final award classification

Year 2
- **BSc (Hons) Physics**
 - Core physics 2: Quantum & atomic physics; Thermal physics; Electromagnetism; Condensed matter physics; Experimental physics & computing; Particles, nuclei & stars; Planets & exoplanets; Mathematics for scientists
- **BSc (Hons) Physics with Astrophysics**
 - Algebra; Analysis; Ordinary differential equations & control; Vector calculus & partial differential equations; Programming skills
 - 32% of final award classification
- **BSc (Hons) Mathematics and Physics**
 - Professional placement or study year abroad options
 - See pages 6 and 7
 - 0% of final award classification

Optional Year
- **BSc (Hons) Physics**
 - Professional placement or study year abroad options
 - See pages 6 and 7
- **BSc (Hons) Physics with Astrophysics**
 - Final year project OR industry team project, plus core and optional units across a wide range of subjects
 - 68% of final award classification
- **BSc (Hons) Mathematics and Physics**
 - Final year project OR industry team project, plus core and optional units across a wide range of subjects
 - 68% of final award classification

Year 3
- **BSc (Hons) Physics**
 - Core units: Problem solving skills
- **BSc (Hons) Physics with Astrophysics**
 - Core units: General relativity; Computational astrophysics; Galaxies & introduction to cosmology; Stars & stellar evolution
- **BSc (Hons) Mathematics and Physics**
 - Core unit: Self-directed learning (Special relativity, Particle & nuclear physics, Fourier analysis)

Physics or Physics with Astrophysics Year 3 options include:
- Contemporary physics; Laser physics; Computational physics; Mathematical methods; Medical physics; Stellar & galactic astrophysics; Nanoscience; Superconductivity; Simulation techniques.

Mathematics and Physics Year 3 options include:
- Differential geometry of curves & surfaces; Metric spaces; Linear control theory; Optimisation methods of operational research; General relativity; Mathematical methods; Quantum mechanics; Medical physics; Photonics; Introduction to topology.

Detailed content of each unit (as currently taught) can be found at www.bath.ac.uk/catalogues

Course units are subject to change – see back cover for details.
We have MPhys courses available in Physics and Physics with Astrophysics. The first two years are the same to allow you to switch between courses if you wish to, with professional placement, research placement and study year abroad options available. The large range of units in the final masters-level year allows you to sample a wide range of different research areas.
Course structure

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Core physics, mathematics, laboratory and computing units</th>
<th>0% of final award classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical methods for physics; Experimental physics & computing; Properties of matter; Electric circuits; Classical mechanics; Vibrations, waves & optics; Introduction to quantum physics; Electricity & magnetism; Relativity & astrophysics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Core units: Electromagnetism; Quantum mechanics</th>
<th>16% of final award classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental physics & computing; Quantum & atomic physics; Particles, nuclei & stars; Mathematics for scientists; Thermal physics; Electromagnetism; Condensed matter physics; Mathematics for scientists; Planets & exoplanets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Year</th>
<th>Professional placement option – see page 6</th>
<th>0% of final award classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>This option is not available to students on the MPhys with study year abroad courses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Year 3 | Core units: Electromagnetism; Quantum mechanics | 34% of final award classification |
| A range of core and optional units including preparation for the final year research project or research placement | Core units: Quantum mechanics; General relativity; Computational astrophysics; Stellar & galactic astrophysics |
| MPhys with study year abroad students will study abroad for a year on an agreed set of units - see page 7 |

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Core units: Mathematical physics; Advanced problem solving; Advanced quantum theory; Nanoscience; Photonics</th>
<th>50% of final award classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>One semester of advanced master's-level units plus a semester-long MPhys research project</td>
<td>Core units: Advanced problem solving; Relativistic cosmology; High energy astrophysics</td>
<td></td>
</tr>
<tr>
<td>MPhys with research placement students will undertake a 6-month research placement instead of the semester-long research project</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 3 options include:
- Condensed matter physics 2; Laser physics; General relativity; MPhys laboratory; Mathematical methods; Medical physics; Electromagnetism 2; Fluid dynamics; Networks; Planetary physics.

Detailed content of each unit (as currently taught) can be found at www.bath.ac.uk/catalogues

Course units are subject to change – see back cover for details.
MSci Mathematics and Physics

The first two years of the MSci courses are the same as the BSc Mathematics and Physics programmes with two years of taught units across a broad range of subjects. During the third year, instead of undertaking a research project like BSc students, you will undertake a series of taught units in mathematics and physics. The final year allows you to weigh your choices either towards mathematics or physics, alongside your choice of topic for a master’s-level final year project.

Course structure

MSci (Hons) Mathematics and Physics

<table>
<thead>
<tr>
<th>Year</th>
<th>Core physics, mathematics, laboratory and computing units</th>
<th>Optional Year</th>
<th>Year 3 options include:</th>
<th>Year 4 masters-level options include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Analysis; Algebra; Methods & applications; Introduction to quantum physics; Properties of matter; Electricity & magnetism; Vibrations, waves & optics;</td>
<td>Professional placement or study year abroad options See pages 6 and 7</td>
<td>Industry team project; General relativity; Modelling & dynamical systems; Complex analysis; Introduction to topology; Projective geometry; Medical physics; Stellar & galactic astrophysics; Magnetism; Networks; Superconductivity.</td>
<td>Differential geometry of curves & surfaces; Linear control theory; Group theory; Algebraic topology; Measure theory & integration; Topics in pure mathematics; Galois theory; Functional analysis; Ordinary differential equations.</td>
</tr>
<tr>
<td>Year 2</td>
<td>Algebra; Analysis; Ordinary differential equations & control; Vector calculus & partial differential equations; Programming skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>A range of core and optional units in mathematics and physics Core units: Metric spaces; Mathematical methods 1 & 2; Simulation techniques; Self-directed learning; Computational physics; Electromagnetism; Mathematical physics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>Master’s-level final year project, plus a range of core and optional advanced master’s-level units in mathematics and physics Core units: Viscous fluid mechanics; Quantum mechanics; Elasticity; Advanced quantum theory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detailed content of each unit (as currently taught) can be found at www.bath.ac.uk/catalogues

Course units are subject to change – see back cover for details.
Application process

Applications to our courses are made through UCAS – the UK Universities and Colleges Admissions Service. Once you have sent your application to UCAS, your form will be considered by our Admissions Team. Every application received before the UCAS deadline in January is given equal consideration, paying particular attention to the subjects you’re studying, your predicted grades, your reference and personal statement. Factors such as academic achievement, your potential, skills, motivation and commitment will all be considered. For more information on how to apply and deadlines visit www.ucas.com

We do not generally conduct interviews for the physics courses unless we feel that we would like to know more about you and your academic preparation for university. For example, this may apply if you have non-traditional qualifications or you have been out of mainstream education for a period of time. Our primary interest is to verify that you have the knowledge and abilities to succeed on one of our courses.

Open Day

If you are undecided which of our courses to apply for, you can visit us on a University Open Day in June or September where you’ll have a chance to speak to current students and staff about your options and hear talks on our courses.

Visit www.bath.ac.uk/study/ug/opendays to find out more.
Living & studying at Bath

The University of Bath is a vibrant community that is located just one mile from the city centre. Everything you need as a student is on campus including cafes, a grocery store, two banks, a dentist, medical centre and top sports facilities.

Bath itself is a relatively small but beautiful UNESCO world-heritage city. It is a great place to be a student with a good selection of restaurants, bars and cafes plus three theatres, cinemas, museums and galleries. There are excellent bus links to and from the campus as well as good train links to London and Bristol.

Find out more about the city of Bath on the official tourism website: www.visitbath.co.uk

Students’ Union

Students consistently rate the Students’ Union (SU) at Bath in the top ten in the country in the National Student Survey. When you join the University of Bath, you’ll automatically become a member of the SU which will give you access to all of the services on offer such as student welfare advice, representation, skills training, peer support, events, sports and societies.

www.Bathstudent.com
Accommodation
The University has a broad range of rooms both on and off-campus to suit a range of budgets. University accommodation is guaranteed to all full-time first year students as long as the application deadline is met and you meet the eligibility criteria.
www.bath.ac.uk/study/ug/accommodation

Library
The University library on-campus is open 24 hours a day, 365 days a year. As a student here you will have access to thousands of books and articles many of which can also be accessed online. You will also have access to many computers around campus and Wi-Fi hotspots. www.bath.ac.uk/library

Sports facilities
The University’s £30million Olympic style sports training village represents one of the best university sports facilities in the country. Facilities include a 50m pool, fully equipped gym, 400m athletics track, sports halls, tennis courts, all-weather pitches, the Physio and Sport Science Centre and much more. As a student here you will have access to the facilities seven days a week with dedicated student sport sessions every day.
www.teambath.com

The arts
There are many ways you can get involved in the arts. The Edge offers a range of discounted classes in dance, music and visual arts as well as free practice facilities. There is an extensive programme of live performances, exhibitions and concerts.
www.bath.ac.uk/arts

Some useful links
Accommodation tours
Take a virtual tour of our accommodation buildings and rooms.
www.bath.ac.uk/study/virtual-tour

Careers
Our careers service offers information, advice and guidance to all students.
www.bath.ac.uk/students/careers

Cost of living
Take a look at our budget guide and start planning financially for university.
www.bath.ac.uk/study/ug/funding/living-costs

Funding
Find out if you’re eligible to apply for one of the University’s bursaries or scholarships.
www.bath.ac.uk/study/ug/funding

The Disability Service
Our Disability Service is there to provide you with information, advice and support if you have a disability.
www.bath.ac.uk/students/services/centre/disability-service

International students
Bath has a truly international community – our students are from over 100 countries around the world.
www.bath.ac.uk/study/international
Contact details
Email: admissions@bath.ac.uk
Telephone: 01225 385579
www.bath.ac.uk/physics

There may be rare occasions where due to unforeseen or unavoidable circumstances it becomes necessary to make significant changes to a course or to withdraw it or part of it (e.g. a particular unit/module). Visit: www.bath.ac.uk/study/ug/apply/admissions/changes-withdrawal
Find out more about this and other important University terms and conditions: http://go.bath.ac.uk/ugp-important-terms