- Student Records
Programme & Unit Catalogues


MA40254: Differential and geometric analysis

Follow this link for further information on academic years Academic Year: 2018/9
Further information on owning departmentsOwning Department/School: Department of Mathematical Sciences
Further information on credits Credits: 6      [equivalent to 12 CATS credits]
Further information on notional study hours Notional Study Hours: 120
Further information on unit levels Level: Masters UG & PG (FHEQ level 7)
Further information on teaching periods Period:
Semester 1
Further information on unit assessment Assessment Summary: EX 100%
Further information on unit assessment Assessment Detail:
  • Examination (EX 100%)
Further information on supplementary assessment Supplementary Assessment:
Like-for-like reassessment (where allowed by programme regulations)
Further information on requisites Requisites: Before taking this unit you must take MA20219. Students who took MA20219 in 2015/16 or earlier must also take MA30041 before taking this unit.
Further information on descriptions Description: Aims:
To develop the theory of continuously differentiable maps in finite dimensions, leading to a proof of a general inverse function theorem, and to introduce the theory of differential forms and its applications.

Learning Outcomes:
After taking this unit, students should be able to state and prove the principal theorems about the Frechet derivative, differential forms and the inverse function theorem, and apply them to simple examples.

Skills:
Numeracy T/F, A
Problem Solving T/F, A
Written Communication F (on problem sheets)

Content:
Review of the Frechet derivative, continuous differentiability and mean value inequality in finite dimensions, contraction mapping theorem.
Inverse and implicit function theorems for continuously differentiable maps, surfaces (submanifolds) defined by equations.
Differential forms: wedge product, exterior derivative, product rule, pullbacks and change of variables, closed and exact forms, Poincare lemma.
differentiable change of variable in n-dimensional integrals and integration of n-forms.
Further topics and applications which might include: matrix groups, Lagrange multiplier rule for constraints, integration of differential forms over simplicial k-chains and/or submanifolds with boundary, Stokes' theorem.
Further information on programme availabilityProgramme availability:

MA40254 is Optional on the following programmes:

Department of Computer Science
  • USCM-AFB20 : BSc(Hons) Computer Science and Mathematics (Year 3)
  • USCM-AAB20 : BSc(Hons) Computer Science and Mathematics with Study year abroad (Year 4)
  • USCM-AKB20 : BSc(Hons) Computer Science and Mathematics with Year long work placement (Year 4)
  • USCM-AFM14 : MComp(Hons) Computer Science and Mathematics (Year 3)
  • USCM-AFM14 : MComp(Hons) Computer Science and Mathematics (Year 4)
  • USCM-AAM14 : MComp(Hons) Computer Science and Mathematics with Study year abroad (Year 4)
  • USCM-AAM14 : MComp(Hons) Computer Science and Mathematics with Study year abroad (Year 5)
  • USCM-AKM14 : MComp(Hons) Computer Science and Mathematics with Year long work placement (Year 4)
  • USCM-AKM14 : MComp(Hons) Computer Science and Mathematics with Year long work placement (Year 5)
Department of Economics
  • UHES-AFB04 : BSc(Hons) Economics and Mathematics (Year 3)
  • UHES-AAB04 : BSc(Hons) Economics and Mathematics with Study year abroad (Year 4)
  • UHES-AKB04 : BSc(Hons) Economics and Mathematics with Year long work placement (Year 4)
  • UHES-ACB04 : BSc(Hons) Economics and Mathematics with Combined Placement and Study Abroad (Year 4)
Department of Mathematical Sciences
  • USMA-AFB15 : BSc(Hons) Mathematical Sciences (Year 3)
  • USMA-AAB16 : BSc(Hons) Mathematical Sciences with Study year abroad (Year 4)
  • USMA-AKB16 : BSc(Hons) Mathematical Sciences with Year long work placement (Year 4)
  • USMA-AFB13 : BSc(Hons) Mathematics (Year 3)
  • USMA-AAB14 : BSc(Hons) Mathematics with Study year abroad (Year 4)
  • USMA-AKB14 : BSc(Hons) Mathematics with Year long work placement (Year 4)
  • USMA-AFB01 : BSc(Hons) Mathematics and Statistics (Year 3)
  • USMA-AAB02 : BSc(Hons) Mathematics and Statistics with Study year abroad (Year 4)
  • USMA-AKB02 : BSc(Hons) Mathematics and Statistics with Year long work placement (Year 4)
  • USMA-AFB05 : BSc(Hons) Statistics (Year 3)
  • USMA-AAB06 : BSc(Hons) Statistics with Study year abroad (Year 4)
  • USMA-AKB06 : BSc(Hons) Statistics with Year long work placement (Year 4)
  • USMA-AFM14 : MMath(Hons) Mathematics (Year 3)
  • USMA-AFM14 : MMath(Hons) Mathematics (Year 4)
  • USMA-AAM15 : MMath(Hons) Mathematics with Study year abroad (Year 4)
  • USMA-AKM15 : MMath(Hons) Mathematics with Year long work placement (Year 4)
  • USMA-AKM15 : MMath(Hons) Mathematics with Year long work placement (Year 5)
Department of Physics
  • USXX-AFB03 : BSc(Hons) Mathematics and Physics (Year 3)
  • USXX-AAB04 : BSc(Hons) Mathematics and Physics with Study year abroad (Year 4)
  • USXX-AKB04 : BSc(Hons) Mathematics and Physics with Year long work placement (Year 4)
  • USXX-AFM01 : MSci(Hons) Mathematics and Physics (Year 4)
  • USXX-AAM01 : MSci(Hons) Mathematics and Physics with Study year abroad (Year 5)
  • USXX-AKM01 : MSci(Hons) Mathematics and Physics with Year long work placement (Year 5)

Notes: