
Academic Year:  2014/5 
Owning Department/School:  Department of Mathematical Sciences 
Credits:  6 
Level:  Masters UG & PG (FHEQ level 7) 
Period: 
Semester 1 
Assessment Summary:  CW 40%, EX 60% 
Assessment Detail: 

Supplementary Assessment: 
MA50178 Mandatory extra work (where allowed by programme regulations) 
Requisites:  
Description:  Aims & Learning Objectives: To teach an understanding of iterative methods for standard problems of linear algebra. Students should know a range of modern iterative methods for solving linear systems and for solving the algebraic eigenvalue problem. They should be able to anayse their algorithms and should have an understanding of relevant practical issues, for large scale problems. They should be able to demonstrate an indepth understanding of the subject. Content: Topics will be chosen from the following: The algebraic eigenvalue problem: Gerschgorin's theorems. The power method and its extensions. Backward Error Analysis (BauerFike). The (Givens) QR factorization and the QR method for symmetric tridiagonal matrices. (Statement of convergence only). The Lanczos Procedure for reduction of a real symmetric matrix to tridiagonal form. Orthogonality properties of Lanczos iterates. Iterative Methods for Linear Systems: Convergence of stationary iteration methods. Special cases of symmetric positive definite and diagonally dominant matrices. Variational principles for linear systems with real symmetric matrices. The conjugate gradient method. Krylov subspaces. Convergence. Connection with the Lanczos method. Iterative Methods for Nonlinear Systems: Newton's Method. Convergence in 1D. Statement of algorithm for systems. 
Programme availability: 
MA50178 is Compulsory on the following programmes:Department of Mathematical Sciences
MA50178 is Optional on the following programmes:Department of Mathematical Sciences
