- Academic Registry
Programme & Unit Catalogues


CH40131: Advanced structural and theoretical methods

[Page last updated: 20 April 2021]

Academic Year: 2021/2
Owning Department/School: Department of Chemistry
Credits: 6      [equivalent to 12 CATS credits]
Notional Study Hours: 120
Level: Masters UG & PG (FHEQ level 7)
Period:
Semester 1
Assessment Summary: EX 100%
Supplementary Assessment:
Like-for-like reassessment (where allowed by programme regulations)
Requisites: Before taking this module you must take CH10137 AND take CH20147
In taking this module you cannot take CH40155
Aims: To describe and give examples of some modern techniques for investigating the structure of a range of inorganic molecules. To introduce the principles and some applications of Statistical Thermodynamics.

Learning Outcomes: After studying the Unit, students should be able to:
* Describe the physical basis, limitations and information available from structural methods, namely, X-Ray crystallography and NMR spectroscopy.
* Solve a range of problems by critically assessing numerical and spectroscopic information
* Use basic statistical thermodynamic techniques to derive bulk properties of compounds from theoretical or spectroscopic data
* Critically assess the reliability of statistical approaches under different conditions
* Solve problems using the techniques introduced including the application of techniques to unseen situations.

Skills: Problem solving (T, F, A), Scientific writing (F, A), Independent working (F), Group working (F).

Content: Brief introduction to crystallography. Crystal systems and lattices. Unit cells. Periodicity in lattices. Space group diagrams. Data collection procedures and solving crystal structures. Atomic scattering factors and structure factors. R factors.
Theoretical basis of NMR spectroscopy. Spin-spin coupling and chemical shifts in NMR spectroscopy and the factors that affect them. Spin systems.
First and second-order spectra. Isotopomers. NMR timescales and static and dynamic NMR spectra. Structural elucidation.
Description of energy partition, the Boltzmann Distribution Law, and quantum statistics. Derivation of partition functions, their use to calculate properties and comparison with experimental techniques. Evaluation of equilibrium and rate constants.

Programme availability:
NB. Postgraduate programme information will be added when the postgraduate catalogues are published in August 2021

CH40131 is Compulsory on the following programmes:

Department of Chemistry
  • USCH-AFM02 : MChem(Hons) Chemistry (Year 4)
  • USCH-AAM03 : MChem(Hons) Chemistry with Study year abroad (Year 4)
  • USCH-AKM02 : MChem(Hons) Chemistry with Industrial Placement (Year 4)

Notes:

  • This unit catalogue is applicable for the 2021/22 academic year only. Students continuing their studies into 2022/23 and beyond should not assume that this unit will be available in future years in the format displayed here for 2021/22.
  • Programmes and units are subject to change in accordance with normal University procedures.
  • Availability of units will be subject to constraints such as staff availability, minimum and maximum group sizes, and timetabling factors as well as a student's ability to meet any pre-requisite rules.
  • Find out more about these and other important University terms and conditions here.